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1

TOPIC

1 Motion in Two Dimensions

1

All those quantities which can be measured are known as physical
quantities. These quantities can be broadly classified into two
categories—scalar quantities and vector quantities.

Scalar quantities are those physical quantities which have only
magnitude and no direction.

These obey the ordinary laws of Algebra. A scalar quantity is
completely specified by merely stating a number. A few examples of
scalars are volume, mass, speed, density, temperature, pressure, time,
power, total path length and energy.

Vector quantities are those physical quantities which have both
magnitude and direction and obey the laws of vector addition.

A vector is specified not by merely stating a number but a direction
as well. Since the concept of vectors involves the idea of direction,
therefore, vectors do not follow the ordinary laws of Algebra. A few
examples of vectors are displacement, velocity, acceleration, impulse,
force and linear momentum.

A vector is represented by a line with
an arrow head. In Fig. 1.1, a vector 


a  is

represented by a directed line PQ. The
length of the line gives the magnitude of
the vector. The magnitude of the vector is
called the modulus of the vector.  The
direction of the arrow represents the
direction of the vector.

Fig. 1.1. Representation of a
vector

P11CH1 
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(i) Parallel vectors. If two collinear
vectors 


a  and 


b  act in the same direction,

then the angle between them is 0°. When
vectors act along the same direction, they
are called parallel vectors.

( ii) Antiparallel vectors. I f two
collinear vectors act in opposite directions,
then the angle between them is 180° or 
radian. Vectors are said to be anti-parallel if
they act in opposite directions.

(iii) Unit vector of a given vector is a vector
of unit magnitude and has the same direction
as that of the given vector.

Unit vector is used to denote the direction of a given vector. It is
unitless and dimensionless vector.

Any vector 

a  can be expressed in terms of its unit vector 



a  as
follows:


a  = a a



Here a


 is in the direction of 

a . 



a  is read as ‘a hat’ or ‘a cap’.



a  = a
a



or
| |

a

a





So, if a given vector is divided by its
magnitude, we get a unit vector.

(iv) The three rectangular unit vectors

i


, j


 and k


 are shown in Fig. 1.4. i


 denotes

the direction of X-axis. j


 denotes the

direction of Y-axis and k


 denotes the

direction of Z-axis. The three unit vectors i


,

Fig. 1.2. Parallel vectors

Fig. 1.3. Antiparallel vectors

Fig. 1.4. Orthogonal triad of
unit vectors
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j


 and k


 are collectively known as ‘orthogonal triad of unit vectors’.
These are also known as base vectors.

(v) Negative of a vector. A vector is said to be
negative of a given vector if its magnitude is the
same as that of the given vector but direction is
reversed.

The negative of a vector 

a  is denoted by

‘ – 

a ’.

In Fig. 1.5, 

b  is the negative of 


a . 


b  = – 


a

A vector which gives the position of a point with
reference to the origin of the co-ordinate system is
called position vector.

Consider a particle moving in a plane. To
describe the position of this particle at any time t,
we use a vector called position vector. This helps to
locate the position of a particle moving in plane or
even in space. Suppose at any instant of time,
the particle is at P. Then OP


 is the position vector

which gives the position of the particle with reference to a point O in
the plane of motion. This point O has been chosen as the origin.

The magnitude of the position vector gives the distance of the particle
from some arbitrarily chosen origin. In addition to this, the direction of
the position vector gives us the direction  in which P lies as viewed
from O.

It may be noted here that position vectors will be different for different
positions of the particle.

The position vector r


 at any time t, in terms of co-ordinates x and
y, is given by,

 r


 = x


 + y


or r


 = x i


 + y j


Fig. 1.5. Negative vector




r

O X

Y

P(x, y)

Fig. 1.6. Position vector
in two dimensions
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In magnitude, | r


| or    r = +2 2x y

If the position of a point P is chosen with
reference to the origin of the three-dimensional
rectangular co-ordinate system as shown in
Fig. 1.7, then the position vector is given by,

r


 = x


 + y


 + z


or r


 =  x i


 + y j


 + z k


The magnitude or modulus of r


 is given by r or | r


| = + +2 2 2x y z .

Two vectors are said to be equal if  they
have the same magnitude and same direction. In
Fig. 1.8, three equal vectors 


a , 


b  and c


 have

been represented. The equality of vectors is
represented as follows:


a  = 


b  = c



Since the three vectors are pointing in the same direction,

 a


 = b


 = c


Also, since the three vectors have equal magnitudes,

 

a 


b  c




If the scales selected for the representation of three vectors are the
same, then three equal vectors are represented by three arrows of equal
lengths, pointing in the same direction.

Zero vector or null vector is a vector which has zero magnitude
and an arbitrary direction. It is represented by 0


.

Fig. 1.7. Position vector in
three dimensions

Fig. 1.8. Equal vectors
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If  = – , then the vector ( + ) 

a  is equal to 0


.

If we multiply a vector by zero, what do we get? The answer

is obviously zero vector. Now, let us consider a vector (

a  + 


b ). If


b  = – 


a , then 


a  + 


b  = 0


.

(i ) The displacement of a ball thrown up and received back by the
thrower is a zero vector.

(ii) The velocity vector of a stationary body is a zero vector.

The process of adding two or more than two vectors is called
‘addition or composition of vectors’.

When two or more than two vectors are added, we get a single vector
called resultant vector.

The resultant of two or more than two vectors is a single vector
which produces the same effect as the individual vectors together produce.

Following three laws have been evolved for the addition of vectors.
(i ) Triangle law of vectors (for addition of two vectors)
(ii ) Parallelogram law of vectors (for addition of two vectors)
(iii) Polygon law of vectors (for addition of more than two vectors).

Let a particle be at the points A, B and C at three successive times t,
t and t respectively. AB


 is the displacement

vector from time t to t. BC


 is the displacement
vector from time t to time t. The total
displacement vector AC


 is the sum or the

resultant of individual displacement vectors
AB


and BC


.

 AC


 = AB


 + BC


B

C

A
Fig. 1.9. Triangle law of

vectors
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This leads us to the following law known as triangle law of vectors.
This law is used for the addition of two vectors.

If two vectors, acting simultaneously at a point, can be represented
both in magnitude and direction by the two sides of a triangle taken in
the same order, then the resultant is represented completely, both in
magnitude and direction, by the third side of the triangle taken in the
opposite order.

Suppose we have to add two vectors

P


 and Q


 as shown in Fig. 1.10 (a).

Now, displace Q


 parallel to itself in such

a way that the tail of Q


 touches the tip of

P


. Complete the triangle to get a new

vector ( P


 + Q


) running straight from

the tail of P


 to the tip of Q


. According

to triangle law of vectors, this new vector is the resultant R


 of the given

vectors P


 and Q


 such that,

R


 = P


 + Q


.
Triangle law of vectors is applicable to triangle of

any shape.

It follows from triangle law of vectors that if three
vectors are represented by the three sides of a triangle
taken in order, then their resultant is zero. Thus, if
three vectors A


, B


 and C


 can be represented
completely by the three sides of a triangle taken in order, then their
vector sum is zero.

 A


 + B


 + C


 = 0


Consider two vectors P


 and Q


 as shown in Fig. 1.12 (a). Displace

Q


 parallel to itself till the tail of Q


 touches the tail of P


.

(a)                              (b)

Fig. 1.10. Tr iangle law of vectors
(Graphical method for addition of vectors)

Fig. 1.11
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Complete the parallelogram
as shown in Fig. 1.12 (b ).
Applying triangle law of vectors
to the vector triangle OAC, we
get

OA


 + AC


 = OC


or          P


 + Q


 = R


So, we conclude that if two vectors are represented completely by
the two adjacent sides, of a parallelogram, drawn from a point, then the
diagonal of the parallelogram drawn through that point gives the
resultant vector. This is parallelogram law of vectors. It is stated as
follows:

‘‘If two vectors, acting simultaneously at a point, can be represented
both in magnitude and direction by the two adjacent sides of a
parallelogram drawn from a point, then the resultant is represented
completely both in magnitude and direction by the diagonal of the
parallelogram passing through that point.’’

In Fig. 1.13, two vectors P


 and Q


 are
completely represented by the two sides OA
and OB respectively of a parallelogram.
Then, according to parallelogram law of
vectors, the diagonal OC of the
parallelogram will give the resultant R


 such

that R


 = P


 + Q


.

Let us analytically calculate the magnitude and direction of the
resultant vector R


.

Let  be the angle between two given vectors P


 and Q


. From C,
drop a perpendicular CN on OA (produced). In the right-angled ANC,

sin  = 
CN
AC

 or CN = AC sin 

(a) (b)

Fig. 1.12. Parallelogram law of vectors

Fig. 1.13. Addition of vectors by
parallelogram law of vectors
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or              CN = Q sin  [... AC = OB = Q]  ...(1)

Also, cos  = 
AN
AC

 or AN = AC cos = Q cos 

Now, ON = OA + AN = P + Q cos  

Considering the right-angled ONC,

OC2 = ON2 + CN2

or R2 = (P + Q cos )2 + (Q sin )2
[From (2) and (1)]

or R2 = P2 + Q2 cos2  + 2PQ cos  + Q2 sin2 

= P2 + Q2 cos2  + Q2 sin2  + 2PQ cos 

= P2 + Q2 (cos2  + sin2 ) + 2PQ cos 

  R2 = P2 + Q2 + 2PQ cos  [... sin2  + cos2  = 1]

or R = 2 2P Q 2PQ cos + +  ...(3)

which is the required expression for the magnitude of the resultant of

two vectors P


 and Q


 inclined to each other at an angle . Equation (3)
is known as the law of cosines.

Let  be the angle which the resultant R


 makes with P


.

Then, tan  = 
CN
ON (in rt. d  ONC)

or tan  = 
Q sin

P Q cos


+ 
      [from (2) and (1)] ...(4)

or  = tan–1 
Q sin

P Q cos
æ ö
ç ÷+ è ø

which gives the direction of the resultant vector.
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Case I. When the given vectors 

P  and 


Q  act in the same direction

In this case,  = 0°

 R = 2 2P Q 2PQ cos 0+ + °   [from equation (3)]

= 2 2P Q 2PQ+ + [... cos 0° = 1]

= 2(P Q)+  = P + Q

or | R


| = | P


| + | Q


|
So, the magnitude of the resultant vector

is equal to the sum of the magnitudes of the
given vectors.

Also, tan  = 
Q sin 0

P Q cos 0
°

+ °
[from equation (4)]

or tan  = 0 [... sin 0° = 0]
  = 0°
So, the resultant vector points in the direction of the given vectors.

Case II. When the given vectors 

P  and 


Q  act at right angles to

each other
In this case,  = 90°

 R = 2 2P Q 2PQ cos 90+ + °

or R = 2 2P Q+ [... cos 90° = 0]

or | R


| =
 

+| | | |P Q2 2

Also,        tan  = 
Q sin 90

P Q cos 90
°

+ °

or tan  = 
Q
P [... sin 90° = 1]

or  = tan–1 
Q
P

æ ö
ç ÷
è ø

Fig. 1.14




R

Q


P

Fig. 1.15
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If P = Q,  then  R = 2 2P P+ or R = 22P  = 2  P

Also, in this case, tan  = 
P
P  = 1 or  = 45°

Case III. When the given vectors 

P  and 


Q  act in opposite

directions
In this case,  = 180°

 R = 2 2P Q 2PQ cos 180+ + °

= 2 2P Q 2PQ+ -     [... cos 180° = – 1]

= 2(P Q)-

 R = ± (P – Q) = P – Q or Q – P

or | R


| = | P


| ~ | Q


|

| P


| ~ | Q


| implies positive difference between | P


| and | Q


|.

So, the magnitude of the resultant vector is equal to the positive
difference of the magnitudes of the given vectors.

Also, tan  = 
Q sin180

P Q cos 180
°

+ °

or tan  = 0
  = 0° or  180°

When | P


| > | Q


|, then  = 0°. [Fig. 1.16]

When | P


| < | Q


|, then  = 180°. [Fig. 1.17]

Clearly, the resultant vector acts in the direction
of the bigger of the two vectors.

1. Flight of a bird. When a bird flies, its wings W1 and W2 push the
air downwards with forces F1 and F2 respectively. The air offers equal
and opposite reactions R1 and R2 in accordance with Newton’s third

Fig. 1.16

Fig. 1.17



Motion in Two Dimensions 11

law of motion. According to parallelogram
law of vectors, the resultant R of R1 and
R2 acts on the bird in the upward
direction [Fig. 1.18]. This helps the bird
to fly upward.

2. Working of a sling. A sling is a
Y-shaped metallic or wooden frame to
which a rubber band is attached.

Tensions
T1 and
T2 are produced in the rubber band
when a stone held on the rubber band
is pulled [Fig. 1.19]. The resultant of T1
and T2 is T in accordance with
parallelogram law of vectors. When the
stone is released, it moves under the
action of T with high speed.

Polygon law of vectors is used for the addition of more than two
vectors.

Consider four vectors P


, Q


, S


 and T


 as shown in Fig. 1.20 (a).

Displace Q


 parallel to itself till the tail of Q


 touches the tip of P


.

Similarly, displace S


 parallel to itself till the tail of S


 touches the tip

of Q


. Again, displace T


 parallel to itself so that its tail touches the

tip of S


. Now a vector R


 running straight from the tail of P


 to the tip

of T


 will be the resultant of P


, Q


, S


 and T


.

This is polygon law of vectors stated as follows :
“If a number of vectors, acting simultaneously at a point, can be

represented both in magnitude and direction by the sides of an open

W1 W2

F1

R1 R2
R

F2

Fig. 1.18

Fig. 1.19
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convex polygon taken in the same order, then the resultant is represented
completely in magnitude and direction by the closing side of the polygon,
taken in the opposite order.”

            

Fig. 1.20. Polygon law of vectors

A quantity can be a vector only if it obeys the laws of vector addition.
Following are the important properties of vector addition.
(i) Vectors of the same nature alone can be added. A force vector

can be added to force vector only. It cannot be added to displacement
vector.

(ii) Vector addition is commutative. The sum of the vectors remains
the same in whatever order they may be added.

According to commutative law of vector addition,

a


 + b


 + c


 + ...... = b


 + a


 + c


 + ...... = c


 + a


 + b


 + ......

The result of vector addition does not depend on the order in which
the vector sum is written.

(iii) Vector addition is distributive.

According to distributive law of vector addition,

( a


 + b


) =  a


 +  b


(iv) Vector addition is associative. The sum of the vectors remains
the same in whatever grouping they are added.

According to associative law of vector addition,

( a


 + b


) + c


= a


 + ( b


 + c


)
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Equilibrant vector is a single vector which balances two or more
than two vectors acting simultaneously at a point.

The equilibrant and the resultant vectors are equal in magnitude
and opposite in direction.

Example 1.  Resultant of two vectors a


 and b


 inclined at an angle 

is c


. Calculate .

Given : | a


| = | b


| = | c


|

Solution. c2 = a2 + b2 + 2ab cos 
or c2 = c2 + c2 + 2c2 cos  [... a = b = c]
or c2 = 2c2 (1 + cos )

or 1 + cos  =
1
2    cos 120°= – 

1
2

or cos  = – 
1
2  or  = 120°

Subtraction of a vector B


 from a vector A


 is the addition of vector


-  to vector A


.

The subtraction of two vectors often becomes necessary in connection
with velocities and accelerations. It is, of course, not very common in
the case of forces.

The process of subtracting one algebraic quantity from another is
equivalent to adding the negative of the quantity to be subtracted.

a – b = a + (– b)

In the same manner, the process of subtracting one vector quantity
from the other is equivalent to adding vectorially the negative of the

vector to be subtracted. Thus, if A


 and B


 are two vectors, then

A


 – B


 = A


 + (– B


)
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B

A

B
A

– B

(a)

B
A

– B
A – B

   

(b) (c)

A – B
   

Fig. 1.21. Subtraction of vectors

A body which is in f light through the atmosphere under the
influence of gravity alone without being propelled by any fuel is called
a projectile.

Examples:
(i) A bomb released from an aeroplane in level flight.

(ii) A bullet fired from a gun.

(iii) A javelin thrown by an athlete.

(iv) An arrow released from bow.

(v) A stone thrown horizontally from the top of a building.

The path followed by a projectile is called trajectory.
The motion of a projectile is a two-dimensional motion.

Following are the two types of projectiles.

(i) Horizontal Projectile. If a body is projected horizontally from a
certain height with a certain velocity, then the body is called a horizontal
projectile.

(ii) Oblique Projectile. If a body is projected at a certain angle with
the horizontal, then the body is called an oblique projectile.

The motion of a projectile is a two-dimensional motion. So, it can be
discussed in two parts.
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(i) horizontal motion (ii) vertical motion.

These two motions take place independent of each other. This is
called the principle of physical independence of motions.

At any instant, the velocity of a projectile has two components
(i ) horizontal component (ii) vertical component.

The horizontal component remains unchanged throughout the
flight. The vertical component is continuously affected by the force of
gravity. Thus, while the horizontal motion is a uniform motion, the
vertical motion is a uniformly accelerated motion.

(i) Nature of Trajectory. Consider a projectile thrown horizontally

from a point O, with horizontal velocity u


, at a certain height above
the ground.

Through the point O, take two axes—
X-axis and Y-axis. Let x and y be the
horizontal and vertical distances
respectively covered by the projectile in time
t. At time t, the projectile is at P (Fig. 1.22).

The horizontal motion of the projectile
is uniform motion. This is because the only
force acting on the projectile is force of
gravity. This force acts in the vertically
downward direction and its horizontal
component is zero.

Using x = x0 + uxt + 
1
2 axt2, we get

x = 0 + ut + 0 or x = ut or t = 
x
u ...(1)

The vertical motion of the projectile is controlled by force of gravity
and is an accelerated motion. The initial velocity uy in the vertically
downward direction is zero. Since Y-axis is taken downwards, therefore,

u

X
y

Px

O

Y GROUND

Fig. 1.22. Trajectory of  horizontal
projectile
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the downward direction will be regarded as positive direction. So, the
acceleration ay of the projectile is + g.

Using y = y0 + uyt + 
1
2 ayt2, we get

 y = 0 + 0 + 
1
2 gt2 or    y = 

1
2 gt2 ...(2)

Combining (1) and (2), we get

y =
1
2 g 

2x
u

æ ö
ç ÷
è ø

  or  y = 22
g
u  x2  or  y = kx2     ...(3)

where k 22
g
u

æ ö
ç ÷
è ø

 is a constant.

Equation (3) is a second degree equation in x and a first degree
equation in y. This is the equation of a parabola.

In the study of projectile motion, both position and time are measured
from ‘O’.
 x0 = y0 = 0.

CONCLUSION
A body thrown horizontally from a certain height above the ground
follows a parabolic trajectory till it hits the ground.

(ii) Time of Flight (T). It is the time of descent of the projectile from
the point of projection to the ground. It is the total time for which the
projectile is in flight.

Let h be the vertical height of the point of projection above the
ground.

Considering vertically downward motion,

y = y0 + uyt + 
1
2 ayt2

Putting values, h = 0 + 0 + 
1
2 gT2 or T = 

2h
g
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(iii) Horizontal Range (R). It is the horizontal
distance travelled by the projectile during the time
of flight.

Using   x = x0 + uxt + 
1
2 axt2, we get

R = 0 + uT + 0

= uT = u
2h
g .

Consider a projectile thrown with velocity
u at an angle  with the horizontal (Fig. 1.24).
The velocity u can be resolved into two
rectangular components (i) u cos  along
X-axis and (ii) u sin  along Y-axis. The motion
of the projectile is a two-dimensional motion.
It can be supposed to be made up of two
motions-horizontal motion (along X-axis) and
vertical motion (along Y-axis). The horizontal
motion of the projectile is uniform motion. This is because the only
force acting on the projectile is the force of gravity. This force acts in
the vertically downward direction and its horizontal component is zero.
Thus, the equations of motion of the projectile for the horizontal
direction are simply the equations of uniform motion in a straight line.
The horizontal motion takes place with constant velocity u cos . If x be
the horizontal distance covered in time t, then

x = (u cos ) t

or   t = cos
x

u 
...(1)

The vertical motion of the projectile is controlled by the force of
gravity. The projectile increases its height up to a maximum where its
vertical velocity vy becomes zero. After this, the projectile reverses its
vertical direction and returns to earth striking the ground with a speed
u which is the same as the initial speed of the projectile.

Fig. 1.23

Fig. 1.24. Trajectory of an
oblique projectile
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Let y be the vertical distance covered by the projectile in time t. Let
us now consider the vertical motion of the projectile.

uy = u sin , ay = – g, ‘t’ = t

We know that y = uyt + 1
2

ayt2

Substituting values, y = u sin  t – 1
2

gt2

Using equation (1), y = u sin  
2

1
cos 2 cos
x xg

u u
æ ö æ ö

-ç ÷ ç ÷
 è ø è ø

or y = x tan  – 
2

2 22 cos
gx

u 
...(2)

This is a first degree equation in y and a second degree equation in
x. This is the equation of a *parabola. So, the path followed by the
p ro jectile, i.e., the trajectory of the projectile is parabolic.

It is clear from equation (2) that the trajectory is completely known
if u and  are known. It should be kept in mind that equation (2) is valid
only if  lies between 0 and /2.

It is the maximum height to which a
projectile rises above the horizontal plane of
projection. It is denoted by hmax. or H. It is
also known as vertical range.

In order to calculate the maximum
height H, we make use of the fact that the
velocity vy of the projectile at the maximum
height is zero. If t1 be the time taken by the projectile to reach maximum
height, then using equation vy = uy + ayt, we get

0 = u sin  – gt1 or  gt1 = u sin  or t1 = 
sinu
g



When ‘t’ = t1, y = H.
y0 = 0, uy = u sin , ay = – g

*The general equation of a parabola which passes through the origin is y = ax – bx2.

Fig. 1.25. Maximum height of
an oblique projectile
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Using relation y = y0 + uy t +  ay t2, we get

H = (u sin ) t1 – 1
2

gt12

or H = u sin   
sinu
g


 – 1

2
 g 

2
sinu
g

æ ö
ç ÷
è ø

or H =
2 2 2 2sin sin

2
u u

g g
 
- or H = 

2 2sin
2

u
g



Time of flight is the total time taken by the projectile to return to the
same level from where it was thrown. It is the total time for which the
projectile is in flight.

Time of flight is equal to twice the time taken by the projectile to reach
the maximum height. This is because the time of ascent is equal to the
time of descent. This fact is also clear from the symmetry of the curve.

Time of flight,   T = 2t
where *t is the time taken by the projectile to reach maximum height.

Now, vy = 0, ay = – g, uy = u sin 
We know that vy = uy + ayt
Substituting values, 0 = u sin  – gt or gt = u sin 

or t =
sinu
g



 T =
2 sinu

g


Horizontal range is the total horizontal distance from the point of
projection to the point where the projectile comes back to the plane of
projection. It is denoted by R.

* This is the time of ascent of the projectile.
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In order to calculate horizontal range
R, we shall consider horizontal motion of
the projectile. The horizontal motion is
uniform motion. It takes place with constant
velocity u cos .

  R = u cos   time of flight

          = u cos   
2 sinu

g


or R = 
2 (2 sin cos )u

g
 

or R = 
2 sin 2u

g


(... 2 sin  cos  = sin 2)

For a given velocity of projection and at a given place, the value of R
will be maximum when the value of sin 2 is maximum i.e., 1.

For R to be maximum, sin 2 = 1
(maximum value)

or sin 2 = sin 90°
or  = 45°

So, for a given velocity, the angle of

projection for maximum range is 45°, i.e., 4
x

.

Maximum horizontal range,   Rmax. = 
2u

g

Again, R = 
2 sin 2u

g


 = 
2 sin (180 2 )u

g
° - 

  [... sin (180° – 2) = sin 2]

or R = 
2 sin 2( )u

g


Fig. 1.26. Horizontal range of an
oblique projectile

Fig. 1.27. Two angles of
projection for the same range
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=
2 sin 2(90 )u

g
° - 

This shows that there are two
angles of projection for the same
horizontal range i.e.,  and (90° – )
with the horizontal. The projectile will
cover the same horizontal range
whether it is thrown at an angle  or
(90° – ) with the horizontal.

Example 2. A projectile is thrown at
an angle  with the horizontal with kinetic energy E. Calculate the
potential energy at the topmost point of the trajectory.
Solution. Potential energy at the topmost point of the trajectory

= mg hmax. = mg 
2 2sin

2
u

g


= 21
2

muæ ö
ç ÷
è ø

 sin2  = E sin2 

Example 3. A projectile is thrown with an initial velocity of x i


 + y j


.
The range of the projectile is twice the maximum height of the projectile.

Calculate 
y
x .

Solution.
2 sin 2u

g


= 2 
2 2sin

2
u

g


or 2u2 sin  cos  = u2 sin2 

or 2(u sin ) (u cos ) = (u sin ) (u sin )

But u sin  = y and u cos  = x (given)

      2yx = y2   or     2x = y or
y
x  = 2

When an object follows a circular path at a constant speed, the
motion of the object is called uniform circular motion. The word “uniform”
refers to the speed which is uniform (constant) throughout the motion.

Fig. 1.28. R is same for  = 15° and 75°.
Again, R is same for  = 30° and 60°.
R is maximum for  = 45°
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Consider an object moving with uniform speed v in a circle of radius
R as shown in Fig. 1.29. Since the velocity of the object is changing
continuously in direction, therefore, the object undergoes acceleration.
Let us find the magnitude and direction of this acceleration.

                    (a)            (b)          (c)

Fig. 1.29. Velocity and acceleration of an object in uniform circular motion. The time interval t
decreases from (a) to (c) where it is zero. The acceleration is directed, at each point of the path,
towards the centre of the circle

Let 

r  and r


  be the position vectors and v


 and v


  the velocities of

the object when it is at point P and P as shown in Fig. 1.29(a). By
definition, velocity at a point is along the tangent at that point in the

direction of motion. The velocity vectors v


 and v

  are as shown in Fig.

1.29(a). v

  is obtained in Fig. 1.29(b) using the triangle law of vector

addition. Since the path is circular, v


 is perpendicular to r


 and so is

v

  to r


 . Therefore, v


  is perpendicular to r


 . Since average

acceleration is along v

 .av

va
t


æ ö
ç ÷

ç ÷ç ÷
è ø

, the average acceleration 
.ava


 is

perpendicular to r

 . If we place v


  on the line that bisects the angle

between r


 and r

 , we see that it is directed towards the centre of the

circle. Figure 1.29(b) shows the same quantities for smaller time interval.

v

  and hence .ava



 is again directed towards the centre. In Fig. 1.29(c),
t  0 and the average acceleration becomes the instantaneous
acceleration. It is directed towards the centre.
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The magnitude of 

a  is, by definition, given by

| 

a  | = 0

lim
t   | |v

t







Let the angle between position vectors r


 and r

  be . Since the

velocity vectors v


 and v

  are always perpendicular to the position

vectors, the angle between them is also . Therefore, the triangle CPP
formed by the position vectors and the triangle GHI formed by the

velocity vectors v


, v

  and v


  are similar [Fig. 1.29(a)]. Therefore, the

ratio of the base-length to side-length for one of the triangles is equal
to that of the other triangle. That is:

| |v
v



 = | |
R
r



 or | v

 | = v| |

R
r





Therefore, |

a | = 0

lim
t   | |v

t






 = 0

lim
t 

| |
R

v r
t






 = R

v
0

lim
t 

| |r
t







If t is small,  will also be small and then arc PP can be
approximately taken to be | r


 |.

| r

 |  vt

| |r
t






  v

or                                0
lim
t   | |r

t






= v

Therefore, the centripetal acceleration ac is:

ac = R
væ ö

ç ÷
è ø

v = 
2

R
v

Thus, the acceleration of an object moving with speed v in a circle of

radius R has a magnitude 
2

R
v

 and is always directed towards the centre.
This is why this acceleration is called centripetal acceleration (a term
proposed by Newton). Since v and R are constant, the magnitude of the



Physics—XI24

centripetal acceleration is also constant. However, the direction
changes—pointing always towards the centre. Therefore, a centripetal
acceleration is not a constant vector.

As the object moves from P to P in time t (= t – t), the line CP
(Fig. 1.29.) turns through an angle  as shown in the figure.  is
called angular distance. We define the angular speed  (Greek letter
omega) as the time rate of change of angular displacement.

 = t




Now, if the distance travelled by the object during the time t is s,
i.e., PP is s, then:

v = 
s
t




but s = R . Therefore:

v = R t



 = R

We can express centripetal acceleration ac in terms of angular speed:

ac = 
2

R
v

 = 
2 2R
R


 = 2R

ac = 2R

The time taken by an object to make one revolution is known as its
time period T and the number of revolutions made in one second is

called its frequency 
1
T

æ ö
ç ÷
è ø

. However, during this time the distance

moved by the object is, s = 2R.

Therefore, v = 
2 R

T


 = 2R

In terms of frequency , we have
 = 2
v = 2R
ac = 42 2R.

Example 4. A constant torque is acting on a wheel. If starting from rest,
the wheel makes n rotations in t second, show that the angular

acceleration is given by  = 2
4 n
t


 rad s–2.
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Solution. Since the wheel starts from rest, therefore, the initial angular
velocity 0 is zero.

Number of rotations in t second = n
Angular displacement in time t,  = 2n

Now,  = 0t + 1
2
t2

or 2n = 0 + 1
2
 t2 or  = 2

4 n
t


 rad s–2

If a body moves back and forth repeatedly about a mean position, it
is said to possess oscillatory or vibratory motion.

Very often the body undergoing periodic motion has an equilibrium
position somewhere inside its path. When the body is at this position,
no net external force acts on it. Therefore, if it is left there at rest,
it remains there forever. If the body is given a small displacement from
this position, a force comes into play which tries to bring the body back
to the equilibrium point, giving rise to oscillations or vibrations.
For example, a ball placed in a bowl will be in equilibrium at the
bottom. If displaced a little from the point, it will perform oscillations in
the bowl.

Examples. (i ) Motion of the pendulum of a wall clock. (i i ) Vibrations
of the wire of a ‘sitar’. (iii ) Vibrations of the drum of a ‘tabla’.
(iv ) Oscillations of a mass suspended from a spring. (v ) Motion of liquid
in a U-tube when the liquid is once compressed in one limb and then
left to itself. (vi ) A weighted test tube floating in a liquid executes
oscillatory motion when pressed down and released.

Difference between periodic motion and oscillatory motion.  An
oscillatory motion is always periodic. A periodic motion may or may not
be oscillatory. So, oscillatory motion is merely a special case of periodic
motion. As an example, the motion of the planets around the Sun is
periodic but not oscillatory.

Difference between oscillations and vibrations. There is no
significant difference between oscillations and vibrations. When the
frequency is small, we use the term “oscillation” (like the oscillation of
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a branch of a tree). When the frequency is high, we use the term
“vibration” (like the vibration of a string of a musical instrument).

Simplest form of oscillatory motion. The simplest form of
oscillatory motion is simple harmonic motion. This motion arises when
the force on the oscillating body is directly proportional to its
displacement from the mean position (equilibrium position). At any
point in its oscillation, this force is directed towards the mean position.

Simple Harmonic Motion is a motion which is necessarily periodic
and oscillatory about a fixed mean position. A particle executing such a
motion is always in stable equilibrium about its mean position. So, if a
particle is disturbed slightly from its mean position, it tends to return
to its mean position. The force which tends to bring the particle back to
the mean position is called the restoring force. The greater the
displacement of the particle from the mean position, greater is the
restoring force. Thus, simple harmonic motion is defined as such an
oscillatory motion about a fixed point (mean position) in which the restoring
force is always proportional to the displacement from that point and is
always directed towards that point.

If a particle suffers a small displacement x from its mean position,
then the magnitude of restoring force F is given by

F = – kx ...(1)
where k is known as the force constant. Its SI unit is N m–1. Its
dimensional formula is [ML° T– 2]. The negative sign in equation (1)
indicates that the restoring force is directed towards the mean position.

Importance of the study of simple harmonic motion. Any periodic
motion can be expressed as the resultant of two or more simple harmonic
motions. So, simple harmonic motion is the simplest and most
fundamental of all types of periodic motions.

1. In mechanical wave motion, the particles of the medium execute
either simple harmonic motion or a combination of simple
harmonic motions.

2. The vibrations of the air columns and strings of musical
instruments are either simple harmonic or a superposition of
simple harmonic motions.
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3. The prongs of a vibrating tuning fork oscillate simple
harmonically.

Consider a rigid body which is so
constrained that it cannot have translational
motion. The only possible motion of such a rigid
body is rotation. The line along which the body
is fixed is termed as its axis of rotation. If you
look around, you will come across many
examples of rotation about an axis, a ceiling
fan, a potter’s wheel, a giant wheel in a fair, a
merry-go-round and so on [Fig. 1.30(a) and (b)].

In rotation of a rigid body about a fixed
axis, every
particle of
the body
moves in a
c i r c l e ,
which lies
in a plane
perpendicular
to the axis
and has its
centre on the axis. Fig. 1.31 shows
the rotational motion of a rigid body
about a fixed axis (the z-axis of the
frame of reference). Let P1 be a
particle of the rigid body, arbitrarily
chosen and at a distance r1 from
fixed axis. The particle P1 describes
a circle of radius r1 with its centre
C1 on the fixed axis. The circle lies
in a plane perpendicular to the axis.
The figure also shows another

Fig. 1.30. Rotation about a
fixed axis (a) A ceiling fan

(b) A potter’s wheel

(a)

(b)
C1

C2 P2

P1

r1

r2

P3

O

Fig. 1.31. A rigid body rotation about the
z-axis (Each point of the body such as P1
or P2 describes a circle with its centre (C1
or C2) on the axis. The radius of the circle
(r1 or r2) is the perpendicular distance of the
point (P1 or P2) from the axis. A point on the
axis like P3 remains stationary.)
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particle P2 of the rigid body, P2 is at a distance r2 from the fixed axis.
The particle P2 moves in a circle of radius r2 and with centre C2 on the
axis. This circle, too, lies in a plane perpendicular to the axis. Note that
the circles described by P1 and P2 may lie in different planes; both
these planes, however, are perpendicular to the fixed axis. For any
particle on the axis like P3, r = 0. Any such particle remains stationary
while the body rotates. This is expected since the axis is fixed.

In some examples of rotation, however, the axis may not be
fixed. A prominent example of this kind of rotation is a top spinning in
place [Fig. 1.32.]. (We assume that the top does not slip from place to
place and so does not have translational motion.) We know from
experience that the axis of such a spinning top moves around the vertical
through its point of contact with the ground, sweeping out a cone as
shown in Fig. 1.32. (This movement of the axis of the top around the
vertical is termed precession.) Note, the point of contact of the top
with ground is fixed. The axis of rotation of the top at any instant
passes through the point of contact. Another simple example of this
kind of rotation is the oscillating table fan or a pedestal fan. You may
have observed that the axis of rotation of such a fan has an oscillating
(sidewise) movement in a horizontal plane about the vertical through
the point at which the axis is pivoted [point O in Fig. 1.33].

O

           

O

Fig. 1.32. (a) A spinning top (The          Fig. 1.33. (b) An oscillating table fan.
point of contact of the top with the          The pivot of the fan, point O, is fixed
ground, its tip O, is fixed)
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Do the review exercises in your notebook.

1. A body moves in a plane so that the displacements along the x
and y axes are given by x = 3t3 and y = 4t3. The velocity of the body is
(a) 9 t (b) 15 t
(c) 15 t2 (d) 25 t2.

2. A particle is travelling along a straight line OX. The distance x (in
metre) of the particle from O at a time t is given by x = 37 + 27t – t3
where t is time in second. The distance of the particle from O
when it comes to rest is
(a) 81 m (b) 91 m
(c) 101 m (d) 111 m.

3. A bullet on penetrating 30 cm into its target loses its velocity by
50%. What additional distance will it penetrate into the target
before it comes to rest?
(a) 30 cm (b) 20 cm
(c) 10 cm (d) 5 cm.

4. A projectile is given an initial velocity of ˆ ˆ2i j+ m s–1 where î  is
along the ground and ĵ  is along the vertical. If g = 10 m s–2, the
equation of its trajectory is
(a) 4y = 2x – 25x2 (b) y = x – 5x2

(c) y = 2x – 5x2 (d) 4y = 2x – 5x2

5. The distance x covered by a particle varies with time t as  x2 = 2t2 +
6t + 1. Its acceleration varies with x as
(a) x (b) x2

(c) x–1 (d) x–3

1. In the entire path of a projectile, the quantity that remains
unchanged is __________ .

2. Among the following, the vector quantity is __________ .
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3. If the velocity (in m s–1) of a particle is given by

4.0 î  + 5.0t ĵ , then the magnitude of its acceleration (in m s–2) is
__________ .

4. The horizontal range of a projectile is maximum when the angle of
projection is __________ .

5. The graph between displacement and time for a particle moving
with uniform acceleration is a __________ .

1. Name a quantity which remains unchanged during the flight of an
oblique projectile.

2. At which point of the projectile path, the speed is minimum?
3. Name five physical quantities which change during the motion of

an oblique projectile.
4. A body is projected so that it has maximum range R. What is the

maximum height reached during the flight?
5. Name two quantities which would be reduced if air resistance is

taken into account in the study of motion of oblique projectile.

1. A ball is thrown horizontally and at the same time another ball is
dropped from the top of a tower. (i ) Will both the balls hit the
ground with the same velocity? (ii) Will both the balls reach the
ground at the same time?

2. What is the effect of air resistance on the time of flight and
horizontal range of the projectile?

3. A projectile of mass m is projected with velocity v at an angle 
with the horizontal. What is the magnitude of the change in
momentum of the projectile after time t?

4. The maximum horizontal range of a cannon is 4 km. What is the
muzzle velocity of the shell, if g = 10 m s–2 ?

5. Why does a tennis ball bounce higher on hills than in plains?

1. A motorboat is racing towards north at 25 km h–1 and the water
current in that region is 10 km h–1 in the direction of 60° east of
south. Find the resultant velocity of the boat.
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2. Two vectors acting in opposite directions have a resultant of
10 units. If they act at right angles to each other, the resultant is
50 units. Calculate the magnitudes of the two vectors.

3. A car travelling at 20 m s–1 due north along the highway makes a
right turn on to a side road that heads due east. It takes 50 s for
the car to complete the turn. At the end of 50 second, the car has
a speed of 15 m s–1 along the side road. Determine the magnitude
of average acceleration over the 50 second interval.

4. A child pulls a rope attached to a stone with a force of 60 N. The
rope makes an angle of 40° to the ground.
(a) Calculate the effective value of the pull tending to move the

stone along the ground.
(b) Calculate the force tending to lift the stone vertically.

5. Referred to two rectangular axes, the three successive displacement
vectors have components of + 2.4 m, + 0.5 m ; – 4.6 m, + 3.3 m ;
and – 2.8 m, – 15.8 m. Calculate the components of the resultant
displacement. What is the magnitude of the resultant?
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TOPIC

2 Composition and Resolution
of Force

32

A quantity can be a vector only if it obeys the laws of vector addition.
Following are the important properties of vector addition.
(i) Vectors of the same nature alone can be added. A force vector

can be added to force vector only. It cannot be added to displacement
vector.

(ii ) Vector addition is commutative. The sum of the vectors remains
the same in whatever order they may be added.

According to commutative law of vector addition,


a  + 


b  + c


 + ...... = 


b  + 


a  + c


 + ...... = c


 + 


a  + 


b  + ......

The result of vector addition does not depend on the order in which
the vector sum is written.

Proof. Let us prove the commutative property of vector addition in

the case of two vectors 

a  and 


b .

Applying triangle law of vectors to the vector triangle ABC, we get

AC


 = AB


 + BC


          or AC


 = 

a  + 


b                        ...(1)

Fig. 2.1. Commutative property of vector addition

P11CH2 
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Again, applying triangle law of vectors to the vector triangle ADC,
we get

AC


 = AD


 + DC


or AC


 = 

b  + 


a  ...(2)

From (1) and (2),

a  + 


b  = 


b  + 


a

(iii ) Vector addition is distributive.
According to distributive law of vector addition,

(

a  + 


b ) = 


a  + 


b

(iv ) Vector addition is associative. The sum of the vectors remains
the same in whatever grouping they are added.

According to associative law of vector addition,

(

a  + 


b ) + c


= 

a  + (


b  + c


)

Proof. Let the three vectors 

a , 


b  and c


 be

represented by PQ


, QS


 and ST


 respectively. There
are two ways to calculate the resultant of these
vectors.

The resultant of 

a  and 


b  is PS


 such that

PS


 = 

a  + 


b

The resultant of (

a  + 


b ) and c


 is PT


 such

that

PT


= (

a  + 


b ) + c


            ...(1)

Again, if we add 

b  and c


, we get QT


 such that QT


 = 


b  + c



The resultant of 

a  and (


b  + c


) is PT


 such that

PT


= 

a  + (


b  + c


) ...(2)

Fig. 2.2. Associative
law of vector addition



Physics—XI34

From equations (1) and (2), (

a  + 


b ) + c


 = 


a  + (


b  + c


) which

proves the associative law of vector addition.
In terms of order and grouping, the rules for vector addition are the

same as those of scalar addition.

Resolution of a vector is the process of splitting the vector into two or
more vectors in different directions which together produce the same
effect as is produced by the given vector.

The vectors into which the given vector is splitted are called
component vectors.

Consider two non-zero vectors 

a

and 

b  in a plane [Fig. 2.3]. Let A


 be

any other vector in this plane. Through
the tail (P) of A


, draw a straight line

parallel to 

a .

Similarly, draw a straight line,

parallel to 

b , through the terminal

point (Q) of A


. Let both the lines
intersect at C.

Applying triangle law of vectors, A


 = PC


 + CQ


...(1)

As per the geometrical construction, PC


 = 

a  where  is a real

number. In the given case,  is positive which indicates that PC


 is in

the direction of 

a . If  were negative, then PC


 would have been

opposite to 

a .

Similarly, CQ


= 

b , where  is another real number.

From equation (1), A


 = 

a  + 


b

So, A


 has been resolved along 

a  and 


b .

Fig. 2.3
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It may be noted that A


 determines  and  unambiguously. The
converse is also true, i.e., each vector A


 in a plane is completely

described or determined by a pair of real numbers , . The uniqueness
of the resolution procedure is proved below.

Let us assume that there are two ways of resolving A


 along 

a  and


b  such that


a = 


a  + 


b  = 


a  + 


b

 ( – ) 

a  = ( – )


b

But 

a  and 


b  are different vectors.

So, the above equation is satisfied only if 

a  =


b  = 0



.

Thus, there is one and only one way in which a vector A


 can be

resolved along 

a  and 


b . However, it may be pointed out here that a

vector may be resolved into an infinite number of components. The
reverse process, i.e., the sum of the components will of course yield
only the given vector.

In Fig. 2.4, the resolution of a position vector OP


 has been shown.

Applying parallelogram law of vectors, we can prove that 

a  and



b  are actually the components of OP


.

OQ


 = a

 ,  OR


 = b




Fig. 2.4. Resolution of vector

When a vector is splitted into two component vectors at right angles to
each other, the component vectors are called the rectangular
components of the given vector.
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Consider a vector A


 represented by OP


.
Through the point O, draw two mutually
perpendicular axes—X-axis and Y-axis. Let
the vector A


 make an angle  with the

X-axis. From the point P, drop a
perpendicular PM on X-axis.

Now OM


( )


A x  is the resolved part of

A


 along X-axis. It is also known as the

x-component of A


 or the horizontal

component of A


. Ax



 may be regarded as the projection of A


 on
X-axis.

ON


 (= Ay



) is the resolved part of A


 along Y-axis. It is also known as

the y-component of A


 or the vertical component of A


. The vertical

component of A


 may be regarded as the projection of A


 on Y-axis.

So, Ax



 and Ay



 are the rectangular components of A


.

Applying triangle law of vectors to the vector triangle OMP, we get

Ax



+ Ay



 = A


This equation confirms that Ax



 and Ay



 are the components of A


.

In right-angled triangle OMP,

cos  = 
A
A

x or  Ax = A cos  ...(1)

sin  = 
A
A

y or  Ay = A sin  ...(2)

Squaring and adding (1) and (2), we get

Ax
2 + Ay

2 = A2 cos2  + A2 sin2 

or Ax
2 + Ay

2 = A2 (cos2  + sin2 )

 Ax
2 + Ay

2 = A2 [ cos2  + sin2  = 1]

Y

M

Ay
A Ay

Ax
O M X

P

Fig. 2.5. Resolution of a vector
into two rectangular components
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or A = 2 2A Ax y

This equation gives the magnitude of the given vector in terms of
the magnitudes of the components of the given vector.

Fig. 2.6 shows position vector r


represented by OP.


 Draw PM  X-axis and

PN  Y-axis. ˆOM x i


  and ˆON .y j




According to parallelogram law of vector
addition,

OP


= OM ON
 



or r


= ˆ ˆxi y j

Let  be the angle made by r


 with
X-axis.

Then x = r cos  and y = r sin 

r


   or r = 2 2x y

An example of ‘resolution of a vector’ is
‘walk of a man’. When a man walks, he
presses the ground slantingly in the
backward direction with a force F. The
ground offers an equal reaction R in the
opposite direction. The vertical component
V of this reaction balances the weight of the
man. The horizontal component H helps the
man to walk.

j

Fig. 2.6. Resolution of
position vector

V R 

F 

H

Fig. 2.7. Walk of a man
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Consider two points P and Q having co-ordinates (x1, y1) and (x2, y2)
respectively with reference to the origin O of the co-ordinate system.

Let us first consider the position vector 1r


 which makes angle 1 with
X-axis.

Now, 1r


= 
1x


 + 
1y


 = 1
ˆx i  + 1

ˆy j

x1 = r1 cos 1, y1 = r1 sin 1

r1
2 = x1

2 + y1
2, tan 1 = 1

1

y
x

Again, (x2 – x1) and (y2 – y1) are the

components (in magnitude) of PQ


. Here,

y2 – y1 is negative. [Note that PQ


 is directed
from upper left to lower right.]

Let us now add the components of OP


 to

the components of PQ


.

Then,  x1 + (x2 – x1)= x2 , y1 + (y2 – y1) = y2

This gives us the components of OQ


.

So, we conclude that the rule for addition of vectors can be broken
down into two ordinary algebraic additions, one along each of the chosen
axes. This directly implies that motion along a curve in a plane can be
regarded as the sum of the independent linear motions, one along the
X-axis and the other along Y-axis. The two linear motions may be treated
separately and the results may be combined at the end.

Let a vector A


 be represented by OP


 as shown in Fig. 2.9. With O
as origin, construct a rectangular parallelopiped with three edges along

Fig. 2.8
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the three rectangular axes which
meet at O. A


 becomes the diagonal

of the parallelopiped. Ax



, Ay



 and
Ay



 are three vector intercepts along
x, y and z axes respectively. These
are the three rectangular
components of A


.

Applying triangle law of vectors,

OP


 = OK


 + KP


Applying parallelogram law of

vectors, OK


 = OT


 + OQ


 OP


= OT


 + OQ


 + KP


But KP


= OS


 OP


= OT


 + OQ


  + OS


A


= Az



 + Ax



 + Ay



or  A


= Ax



 + Ay



 + Az



or A


= Ax i


 + Ay j


 + Az k


Again, OP2 = OK2 + KP2

OP2 = OQ2 + QK2 + KP2

or OP2 = OQ2 + OT2 + KP2 [ QK = OT]
or A2 = Ax

2 + Az
2 + Ay

2 [ KP = OS = Ay]
or A2 = Ax

2 + Ay
2 + Az

2

or A = 2 2 2A A Ax y z 

This gives the magnitude of A


 in terms of the magnitudes of

components Ax



, Ay



 and Az



.

S

P

Q

KT

O

Ax


A


Ay


Az

Fig. 2.9. Resolution of a vector into three
rectangular components
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(a) The rotational analogue of force is moment of force. It is also referred
to as torque. This quantity measures the turning effect of a force.

The torque (or moment of force) about an axis of rotation is a
vector quantity, whose magnitude is equal to the product of magnitude of
force and the perpendicular distance of the line of action of force from
the axis of rotation and its direction is perpendicular to the plane
containing the force and perpendicular distance.

Fig. 2.10 shows a force F


 applied on a rigid
body. The body is free to rotate about an axis
passing through a point O and perpendicular
to the plane of paper. If d is the perpendicular
distance of the line of action of force from the
point O, then the torque  about the axis of
rotation is :  = Fd.

The symbol  stands for the Greek letter tau.
The torque is taken as positive if it tends to rotate the body

anticlockwise. If the torque tends to rotate the body clockwise, then it
is taken as negative.

The SI unit of torque is N m. Its dimensional formula is [ML2T–2].
The dimensions of torque are the same as those of work or energy.

It is, however, a very different physical quantity than work. Moment of
force is a vector, while work is a scalar.

(b) Torque in Vector Notation. If a
force F



 acts on a single particle at a
point P whose position with respect to
the origin O is given by the position
vector r



, then the moment of force,
acting on the particle, with respect to
the origin O is given by

 


  = r


 × F


The direction of 


  is perpendicular

to the plane of r


 and F


. Its direction is given by right-handed screw
rule or right-hand thumb rule.

Fig. 2.10

Fig. 2.11
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The magnitude of 


  is given by  = rF sin  ...(1)

where r is the magnitude of the position vector r


 i.e., the length OP, F

is the magnitude of the force F


 and  is the angle between r


 and F


.

Now, sin  = 
d
r  or d = r sin 

From = n(1),  = F (r sin ) = Fr

 = Fd

Again  = r (F sin ) = r F

 = r F



(i) If r = 0, then  = 0. Clearly, a force has no torque if it passes
through the point O about which torque is to be calculated. This explains
as to why we cannot open or close a door by applying force at the
hinges of the door.

(ii) If  = 0° or 180°, then sin  = 0.
 t = r F sin  =

0
In this case, the line of action of

the force passes through point O. Thus,
if the line of action of force passes
through point O, the torque is zero.

(iii) If  = 90°, then sin  = sin 90° =
1 (max. value). So,  is maximum.

max. = r F
This explains as to why a handle is

fixed perpendicular to the plane of door.

A couple is a set of two equal (in magnitude), opposite (in direction)
forces having different lines of action. A couple produces rotation without
translation.

Properties of a Couple. (a) A couple produces or tends to produce
only the rotational motion. (b) A couple cannot be replaced by a single
force. (c) A couple can be shifted anywhere in its plane of action.

Fig. 2.12
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Torque is the turning effect produced by
a single force. Couple is only a set of two equal
(in magnitude), opposite (in direction) and
parallel forces having different lines of action.

Moment of Couple. It is the rotational
effect produced by a couple. It is a vector
quantity. Its units and dimensions are the

same as those of 


 .

Expression for Moment of Couple. Let
OX, OY and OZ be the three mutually
perpendicular axes. Let two equal (in
magnitude) and opposite (in direction) forces, – F



 and F


 act at P and Q
respectively in the XOZ plane. The position vectors of P and Q with

reference to origin O are given by 1r


 and 2r


 respectively.

Moment of force – F


 about O, 1



  = 1r


  (– F


) = – 1r


  F


Moment of force F


 about O, 2



  = 2r


  F


Applying the right-hand rule for
the cross product of vectors, we find

that 1



  acts along the negative

direction of Y-axis and 2



  acts along
the positive direction of Y-axis as
shown in Fig. 2.14.

The moment of the couple C


 is

vector sum of 1r


 and 2r


.

 C


 = 1



  + 2





                    = – 1r


  F


 + 2r


  F


 = 2r


  F


 – r1   F


or C


= ( 2r


 – 1r


)  F


Fig. 2.13. The Earth’s
magnetic field exerts equal and
opposite forces on the poles
of a compass needle. These
two forces form a couple

Y


2


1

O

Z

X
r2


r2


r


r1


r1


F


– F

QP

Fig. 2.14. Moment of couple
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Applying triangle law of vectors to the vector triangle OPQ, we get

1r


 + r


= 2r


               or   2r


 – 1r


 = r


 C


= r


  F


The vector r


 lies in the plane of the two forces, i.e., the plane XOZ.

C


 is perpendicular to this plane.

Fig. 2.15. Our fingers apply a couple to turn the lid

Consider a rigid body which is capable of rotation about an axis
through a point O of the rigid body and perpendicular to the plane of
the paper.

Consider a point P such that the
position vector of P with respect to O is r



[Fig. 2.16]. Suppose an external force F


is applied at the point P as shown. Let the
body turn through an infinitesimally small
angle d in a short time dt so that P moves
to new position P such that PP


  = ds


.

*In magnitude, ds = r d ...(1)
Work dW done in rotating the body

through a small angle d is given by

dW = F


 . ds


 = Fds cos 

d

ds

r

P


90° – 
r P

O


Fs


F

Fig. 2.16. Work done in rotational
motion

* ...  = l
r
 l = r 

Here, l is the length of an arc of a circle of radius r,  is the angle subtended by
the arc at the centre of circle.
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where  is the angle between F


 and ds


.

Now, dW =  (F  co s ) ds = Fs r d [From (1)]

where Fs (= F cos ) is the component of F


 in the direction of ds


 . Fs


 is

perpendicular to r


.

Again, dW = (F cos ) r d = (r F cos ) d

But rF cos  = rF sin (90° – ) = | F|r
 

  = |

 | = 

where (90° – ) is the angle between r


 and F


.

  is the moment of F



about O.

 d W = 

  . d




Both 

  and d


  act in the same direction. So, the angle between

them is 0°.
 dW = d

Wdò = 
0

d


 ò or W =  
0

( 0)d


    -  ò

or W = 

Here it is assumed that  is constant. Thus, the work done in rotating
the body through a given angle is equal to the product of the torque
and the angular displacement of the body.

Power, P = 
Wd

dt  = 
d
dt  ()

or P =  
d
dt  ()           or P = 

Note that  is being assumed as a constant.

A rigid body is said to be in mechanical equilibrium if both its
linear momentum and angular momentum are not changing with time,
or equivalently the body has neither linear acceleration nor angular
acceleration.
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A rigid body such as a chair, a bridge or building is said to be in
equilibrium if both the linear momentum and the angular momentum
of the rigid body have a constant value. When a rigid body is in
equilibrium, the linear acceleration of its centre of mass is zero. Also,
the angular acceleration of the rigid body about any fixed axis in the
reference frame is zero.

For the equilibrium of a rigid body, it is not necessary that the rigid
body is at rest. However, if the rigid body is at rest, then the equilibrium
of the rigid body is called static equilibrium.

(i) First Condition for Equilibrium.  The translational motion of
the centre of mass of a rigid body is governed by the following equation:

 .Fext
 = 

d
dt  ( p )

Here   
.Fext  is the vector sum of all the external forces that act on

the rigid body.

For equilibrium, p  must have a constant value.


d
dt ( p ) = 0

 


.Fext = 0

This vector equation is equivalent to three scalar equations:

1
F 0

n

ix
i 

 , 
1

F 0
n

iy
i 

 , 
1

F 0
n

iz
i 

                       ...(1)

This leads us to the first condition for the equilibrium of rigid
bodies.

“The vector sum of all the external forces acting on the rigid
body must be zero”.

(ii) Second Condition for Equilibrium. The rotational motion of a
rigid body is governed by the following equation:

 .ext

 = 


d
dt
L

Here  .ext

  represents the vector sum of all the external torques

that act on the body.
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For equilibrium, L


 must have a constant value.


d
dt  ( L


) = 0

  .ext

 = 0

This vector equation can be written as three scalar equations:

                  
1

0
n

ix
i 

  , 
1

0
n

iy
i 

  , 
1

0
n

iz
i 

                     ...(2)

This leads us to the second condition for the equilibrium of rigid
bodies.

“The vector sum of all the external torques acting on the rigid
body must be zero.”

The second condition for equilibrium is independent of the choice
of the origin and the co-ordinate axes used for calculating the
components of torques. If the net torque is zero, then its components
are zero for any choice of x, y and z axes.

A body may be in partial equilibrium i.e., it may be in translational
equilibrium and not in rotational equilibrium or it may be in rotational
equilibrium and not in translational equilibrium.

Consider a light (i.e., of negligible
mass) rod (AB), at the two ends
(A and B) of which two parallel forces
both equal in magnitude are applied
perpendicular to the rod as shown
in Fig. 2.17.

Let C be the midpoint of AB. CA
= CB = a. The moments of the forces at A and B, about C, will both be
equal in magnitude (aF), but opposite in sense as shown. The net
moment on the rod will be zero. The system will be in rotational
equilibrium, but it will not be in translational equilibrium: F  0.

The force at B in Fig. 2.17 is reversed in Fig. 2.18. Thus, we have
the same rod with two equal and opposite forces applied perpendicular
to the rod, one at end A and the other at end B. Here the moments of

Fig. 2.17
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both the forces are equal, but they
are not opposite; they act in the
same sense and cause anticlockwise
rotation of the rod. The total force
on the body is zero; so the body is
in translational equilibrium; but it
is not in rotational equilibrium.
Although the rod is not fixed in any
way, it undergoes pure rotation (i.e.,
rotation without translation).

An ideal lever is essentially a light
(i.e., of negligible mass) rod pivoted at a
point along its length. This point is
called the fulcrum. A see-saw on the
children’s playground is a typical
example of a lever. Two forces F1 and F2,
parallel to each other and usually
perpendicular to the lever, act on the lever at distances d1 and d2
respectively from the fulcrum as shown in Fig. 2.19.

Let R be the reaction of the support at the fulcrum. For translational
equilibrium,

R – F1 – F2 = 0                                   ...(1)
For considering rotational equilibrium, we take the moments about

the fulcrum ; the sum of moments must be zero.
F1d1 – F2d2 = 0      ...(2)

Normally the anticlockwise (clockwise) moments are taken to be
positive (negative). Note R acts at the fulcrum itself and has zero moment
about the fulcrum.

In the case of the lever, force F1 is usually some weight to be lifted.
It is called the load and its distance from the fulcrum d1 is called the
load arm. Force F2 is the effort applied to lift the load ; distance d2 of
the effort from the fulcrum is the effort arm.

Fig. 2.18

Fig. 2.19
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Eq. (2) can be written as
F1d1 = F2d2

or load × load arm = effort × effort arm
The above equation expresses the principle of moments for a lever.

Incidentally the ratio F1/F2 is called the Mechanical Advantage (M.A.);

M.A. = 1

2

F
F  = 

2

1

d
d

If the effort arm d2 is larger than the load arm, the mechanical
advantage is greater than one. Mechanical advantage greater than one
means that a small effort can be used to lift a large load.

The centre of gravity of a body is a
point where the weight of the body acts
and total gravitational torque on the body
is zero.

Consider an irregular-shaped
cardboard and a narrow tipped object
like a pencil. By trial and error, we can
locate a point G on the cardboard where
it can be balanced on the tip of the
pencil. (The cardboard remains
horizontal in this position.) This point of
balance is the centre of gravity (CG) of
the cardboard. The tip of the pencil
provides a vertically upward force due to
which the cardboard is in mechanical
equilibrium. As shown in Fig. 2.20, the reaction of the tip is equal and

opposite to Mg


, the total weight of (i.e., the force of gravity on) the
cardboard and hence the cardboard is in translational equilibrium. It is
also in rotational equilibrium; if it were not so, due to the unbalanced
torque it would tilt and fall. There are torques on the cardboard due to

the forces of gravity like 1m g


, 2m g


 ...... etc., acting on the individual
particles that make up the cardboard.

Fig. 2.20. Balancing a cardboard
on the tip of a pencil. The point of
support G is the centre of gravity
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The CG of the cardboard is so located that the total torque on it due

to the forces 1m g


, 2m g


 ...... etc. is zero.

If ir


 is the position vector of the ith particle of an extended body
with respect to its CG, then the torque about the CG, due to the force

of gravity on the particle is i


  = ir


 × im g


. The total gravitational torque

about the CG is zero, i.e., g


  =  i


  =  ir


 × im g


 = 0      ...(1)

We may therefore, define the CG of a body as that point where the
total gravitational torque on the body is zero.

In Eq. (1), g


 is the same for all particles, and hence it comes out of

the summation. This gives, since g


 is non-zero,

mi ir


 = 0. The position vectors ( ir


) are taken with respect to the
CG. So, the origin must be the centre of mass of the body. Thus, the
centre of gravity of the body coincides with the centre of mass in uniform
gravity or gravity-free space.

Something is in equilibrium when both the resultant force and
resultant turning moment on it are zero.

Following are the three types of translational static equilibrium of a
body.

(i) When potential energy is minimum, the particle is said to be
in stable equilibrium.

Any displacement of the particle from the equilibrium position will
result in a restoring force. This restoring force shall try to return the
particle to the equilibrium position.

If a body is in stable equilibrium, work must be done on it by an
external agent to change its position. This results in an increase in its
potential energy.

Consider a cube at rest on one face on a horizontal table. Fig. 2.21
shows the central cross-section of the cube. The centre of gravity is
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shown at the centre of this cross-section.
Suppose a force F is applied to the cube so
as to rotate it without slipping about an axis
along an edge. The centre of gravity of the
cube will be raised. Moreover, work is done
on the cube. This increases the potential
energy of the cube. If the force is removed,
the cube tends to return to its original
position. This initial position is clearly a stable equilibrium position.

(ii) When the potential energy of a system is maximum, the
system is in unstable equilibrium.

Any displacement from ‘unstable
equilibrium position’ will result in a force
tending to push the system farther from the
‘unstable equilibrium position’. No work is
required to be done on the system by an
external agent to change the position of the
system. The displacement results in a
decrease in the potential energy of the system.

A cube balanced on an edge can be considered in unstable
equilibrium if a horizontal force is applied perpendicular to the edge.
But the cube is in stable equilibrium with respect to a horizontal force
parallel to the edge.

(iii) When the potential energy of a system is constant, the
system is said to be in neutral
equilibrium.

When the system is displaced slightly,
there is neither a repelling nor a restoring
force.

A sphere (say, a football) on a
horizontal table is a good illustration of
neutral equilibrium. If a horizontal force
is applied on the sphere, the centre of
gravity of the sphere is neither raised nor lowered. The centre of gravity
moves along the dashed line in Fig. 2.23. The potential energy of the
sphere remains constant during displacement.

Fig. 2.21. Stable equilibrium

Fig. 2.22. Unstable equilibrium

Fig. 2.23. Neutral equilibrium
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The centre of mass of a body is a point
where the whole mass of the body is
supposed to be concentrated for describing
its translatory motion.

The centre of mass of a system of
particles is that single point which moves
in the same way in which a single particle
having the total mass of the system and
acted upon by the same external force
would move.

The centre of mass of a system is only
a point defined mathematically for the sake
of convenience. It is not necessary that the
total mass of the system be actually present at the centre of mass. As
an example, centre of mass of a uniform circular ring is at the centre of
the ring where there is no mass.

It may be noted that it is not necessary that there may be a material
particle at the centre of mass of the system. But we can always calculate
the position of the centre of mass at each time.

(i) For a two-particle system, the centre of mass always lies between

the two particles and on the line joining them. In-fact R


 is a weighted

average i.e., each particle makes a contribution proportional to its mass.
(ii) When the two particles are of equal masses i.e., m1 = m2 = m(say),

then

R


= 
2 2 1 2

2
m r m r r r

m m

   

 




So, the centre of mass of two particles of equal masses lies exactly
midway between them.

Friction is the retarding force which is called into play when a
body actually moves or tends to move over the surface of another body.

Y

X

Z

O

m1

m2

Centre
of mass

 r (
t)

1

r (t)2

R(t)

Fig. 2.24. Centre of mass of a
two-particle system
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Consider a block of mass m which is projected with initial velocity v
along a long horizontal table. The block will finally come to rest. This
means that while it is moving, it experiences an opposing force that
points in a direction opposite to its motion. This opposing force is called
force of friction.

Whenever the surface of one body slides over that of another, each
body exerts a frictional force on the other. The frictional force on each
body is in a direction opposite to its motion relative to the other body.
Frictional forces always oppose relative motion and never help it. Even
when no relative motion is actually present but there is only a
tendency for relative motion, frictional forces exist between surfaces.

Friction is very important in our daily lives. Left to act alone, it
brings every moving body to a stop. In an automobile, nearly 20% of the
engine power is used to counteract frictional forces. Friction causes
wear and tear of the moving parts and many engineering man-hours
are devoted to reducing it. On the other hand, without friction, we
could not walk, we could not hold a pen and if could it would not write;
wheeled transport as we know it would not be possible.

Consider a block at rest on a horizontal table. We find that the
block will not move even though we apply a small force [Fig. 2.25(1)].
The applied force is clearly balanced by an opposite frictional force
exerted on the block by the table, acting along the surface of contact.
As the applied force is gradually increased, the frictional force fs also
increases [Figs. 2.25(2) and 2.25(3)]. This indicates the self-adjusting
nature of the frictional force.

        

             Fig. 2.25 (1)      Fig. 2.25 (2) Fig. 2.25 (3)

The frictional forces acting between surfaces at rest with respect to
each other are called forces of static friction.

As we continue to increase the applied force, we find some definite
force at which the block just begins to move [Fig. 2.25(4)]. At this stage,
the maximum force of static friction acts. The maximum force of static
friction will be the same as the smallest force necessary to start motion.
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Once motion is started, the frictional force decreases so that a smaller
force is necessary to maintain uniform motion [Fig. 2.25 (5)]. The forces
acting between surfaces in relative motion are called forces of kinetic friction.

If the applied force is greater than the force of kinetic friction, then
the block has accelerated motion [Fig. 2.25 (6)].

      

             Fig. 2.25 (4)       Fig. 2.25 (5)   Fig. 2.25 (6)

It is the force of friction which exactly balances the applied force
during the stationary state of the body. This frictional force exists when
the bodies in contact are at rest with respect to each other. The force of
static friction is a self-adjusting force i.e., it adjusts its magnitude and
direction so as to become exactly equal and opposite to the applied
pull. The direction of the force of friction remains always opposite to
the direction of the applied force.

Consider a block resting on a horizontal
surface [Fig. 2.26]. Let a small pull P be
applied on the body as shown. Let fs be the
resulting force of static friction. In the
equilibrium position, the weight W of the body
will be balanced by the normal reaction R.
And the applied pull P will be balanced by
the frictional force fs.

In vector notation, W


 = – R


and P


 = – sf


Limiting friction is the maximum value of static friction which is
called into play when a body is just going to start sliding over the surface
of another body.

Fig. 2.26.  Static friction
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When the applied pull P is increased, the static frictional force fs
also increases. However, there is a particular limit upto which the static
frictional force fs can increase. Beyond this limit, the applied pull P will
be able to produce motion in the body.

Following are the laws of limiting friction:
I. The direction of the force of limiting friction is always opposite to

that in which the motion tends to take place.
II. The limiting friction acts tangentially to the two surfaces in contact.
III. The magnitude of the limiting friction is directly proportional to

the normal reaction between the two surfaces.
IV. The limiting friction depends upon the material and the nature of

the surfaces in contact and their state of polish.
V. For any two given surfaces, the magnitude of the limiting friction

is independent of the shape or the area of the surfaces in contact so long
as the normal reaction remains the same.

Experimental Verification. Consider a
wooden block placed on a horizontal
surface. It is attached to a string which
passes over a frictionless pulley carrying a
scale pan at the free end [Fig. 2.27]. Add
weights in the scale pan till wooden block
just starts sliding. It is evident that the force
of friction was opposing the motion. This
verifies law I.

The force of friction f acts along the
horizontal surface. This verifies law II.

When the block just starts sliding, the
total weight added in the scale pan along with the weight of the scale
pan is equal to the limiting friction. The normal reaction R is equal to
the weight mg of the block. Now, put some known weight on the block.
Determine the limiting friction again. It will be observed that the ratio
of limiting friction and normal reaction is constant. In other words, the

Fig. 2.27. Experimental
verification of the laws of

limiting friction
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limiting friction is proportional to the normal reaction R. This verifies
law III.

Let the wooden block be replaced by glass block of the same weight
mg. It will be observed that the limiting friction will be different in this
case. This verifies law IV.

If the wooden block is placed on its side instead of on its base, it will
be observed that same force is required to move the block as when it
was placed on its base. This verifies law V.

Dynamic or kinetic friction comes into play if the two bodies in
contact are in relative motion. It acts in a direction opposite to the
direction of the instantaneous velocity.

The dynamic or kinetic friction is of the following two types :
(i ) Sliding friction. It comes into play when a solid body slides over

the surface of another body.
(ii ) Rolling friction. It comes into play when a body rolls over the

surface of another body.

(i ) The sliding friction opposes the applied force and has a constant
value, depending upon the nature of the two surfaces in relative motion.

(ii ) The force of sliding friction is directly proportional to the normal
reaction R.

(iii ) The sliding frictional force is independent of the area of the
contact between the two surfaces so long as the normal reaction remains
the same.

(iv ) The sliding friction does not depend upon the velocity, provided
the velocity is neither too large nor too small.

It is illustrated graphically in Fig. 2.28. When there is no relative
motion between the two bodies in contact, the frictional force increases
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at the same rate as the applied
force.

If ON' is the applied force, then ON
is the frictional force such that

ON' = ON
The slope of the curve Oa is

constant and is equal to unity.
When the applied force is equal to

Od, the static frictional force becomes
maximum. So, ad represents the limiting friction. When the applied
pull exceeds the value Od, the body begins to move. At this stage, the
frictional force suddenly decreases by a small amount and acquires a
constant value ce. This value represents the dynamic or kinetic or sliding
frictional force.

For any two surfaces in contact, it is the ratio of the limiting friction
fms and the normal reaction R between them. It is denoted by s.

s = R
msf

Since s is a pure ratio therefore it has no units. The value of s
depends upon the state of polish of the two surfaces in contact. If the
surfaces are smooth, the value of s is small.

The force of static friction fs is equal to the applied force. So, fs can
have any value from 0 to fms .

 fs  fms

[The equality sign holds only when fs has its maximum value.]

                            Rs sf  

It is defined as the ratio of kinetic friction and normal reaction. It is
denoted by k.

Applied force
d e

NO
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e 
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Fig. 2.28. Variation of frictional force
with the applied force
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 k = R
kf

Now,
s

k




= R

msf
  

R

kf
 = 

ms

k

f
f

But fms > fk

 s > k

It is the angle which the resultant of the force of limiting friction msf


and the normal reaction R


 makes with the normal reaction R


.

Consider a block of weight W


 resting

on a horizontal surface. The weight W


 will

be balanced by the normal reaction R


[Fig. 2.29].

In vector notation, W


 = – R


 (Newton’s
3rd law of motion)

Now, apply a horizontal force P


 of such
a magnitude that the block is about to move. Then, CB will represent
the maximum force of static friction i.e., limiting friction. The resultant
of the limiting friction and the normal reaction is represented by the
diagonal CL of the parallelogram CBLA. The angle  which the resultant
makes with the normal reaction is called the angle of friction.

In CAL, tan  = 
AL CB
CA CA

  = R
msf

But R
msf

= s     (definition of coefficient of friction)

 tan  = s

So, the tangent of the angle of friction is equal to the coefficient of
static friction.

Fig. 2.29. Angle of friction
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When a body rolls or tends to roll over the surface of another body,
then both the rolling body and the surface on which it rolls are
compressed by a small amount. As a result, the rolling body has to
continuously climb a hill as shown [Fig. 2.30]. Apart from this, the
rolling body has to continuously detach
itself from the surface on which it rolls.
This is opposed by the adhesive force
between the two surfaces in contact. On
account of both these factors, a force
originates which retards the rolling
motion. This retarding force is called the
rolling friction. It is denoted by fr .

Laws of rolling friction. The following laws of rolling friction are
based on experiments.

 (i ) Rolling friction is directly proportional to normal reaction.
fr  R

(ii ) Rolling friction is inversely proportional to the radius of the
rolling body.

fr   
1
r

Combining the two laws, we get

fr 
R
r

or fr = r  
R
r           ...(1)

where r is the coefficient of rolling friction, R is the normal reaction
and r is the radius of the rolling body.

Comparison. For the same magnitude of normal reaction, the sliding
friction is much greater than the rolling friction. That is why we prefer
to convert sliding friction into rolling friction. The ball and roller bearings
make use of this principle.

Fig. 2.30. Cause of rolling friction
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Illustration. The sliding friction of steel on steel is 100 times more
than the rolling friction of steel on steel.

 (i ) Without friction between our feet and the ground, it will not be
possible to walk. When the ground becomes slippery after rain, it is
made rough by spreading sand, etc.

 (ii) The tyres of the vehicles are made rough to increase friction.
(iii) Various parts of a machine are able to rotate due to friction

between belt and pulley.

 (i) Wear and tear of the machinery is due to friction.
(ii ) Friction between different parts of the rotating machines

produces heat and causes damage to them.
(iii) We have to apply extra power to machines in order to overcome

friction. Thus, the efficiency of the machines decreases.

(i ) Polishing. The interlocking and the projections between the two
surfaces are minimised and therefore the friction is reduced. This makes
their life long.

(ii ) Lubrication. A lubricant is a substance (a solid or a liquid) which
forms thin layer between the two surfaces in contact. It fills the
depressions present in the surfaces of contact and hence friction is
reduced.

(iii ) Streamlining. When a body moves past a fluid (liquid or air),
the particles of the fluid move past it in regular lines of flow called
streamlines. It is found that the resistance offered by the fluid to the
body is minimum when its shape resembles that of streamlines. Thus
the shape of automobiles is so designed that it resembles the streamline
pattern and the resistance offered by the fluid is minimum.



Physics—XI60

(iv ) Avoiding moisture. When the moisture
is present, the friction is more. So, we must
avoid moisture between the two surfaces.

(v) Use of alloys. Friction is reduced by
lining the moving parts with alloys because
alloys have low coefficients of friction.

(vi) Use of ball-bearings or roller-bearings.
The rolling friction is much less than the sliding
friction. So, we convert sliding friction into
rolling friction. Even the axle is not allowed to
move directly in the hub. The friction is further
minimised by the use of roller-bearings or ball-bearings [Fig. 2.31].

Suppose a force P is applied to pull a
block of weight W [Fig. 2.32]. The force P
can be resolved into two rectangular
components : P cos  and P sin .

If R be the normal reaction, then
R = W – P sin 

Force of kinetic friction,
f k = kR

or f k = k (W – P sin )
               ...(1)

If a force P is applied to push a block of
weight W [Fig. 2.33], then
normal reaction,

R = W + P sin 
force of kinetic friction,fk= k R
or fk = k (W + P sin )

                  ...(2)
Comparing (1) and (2), we find that

fk > fk
So, the frictional force is more in the case of push.
Hence, it is easier to pull than to push a body.

Fig. 2.31. Ball-bearings

Fig. 2.32. Pulling a block

Fig. 2.33. Pushing a block
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Do the review exercises in your notebook.

1. A circular disk of radius R is made from an iron plate of thickness
t and another disc Y of radius 4R is made from an iron plate of

thickness 
4
t

. Then the relation between the moments of inertia IX

and IY is
(a) IY = IX (b) IY = 64 IX
(c) IY = 32 IX (d) IY = 16 IX.

2. A thin circular ring of mass M and radius r is rotating about its
axis with a constant angular velocity . Four objects, each of mass
m, are kept gently on the opposite ends of two perpendicular
diameters of the ring. The angular velocity of the ring will be

(a)
M
4m


(b)
M
4m


(c)
(M 4 )

M
m 

(d)
(M 4 )

M + 4
m
m

- 
.

3. One end of a thin uniform rod of length L and mass M1 is riveted
to the centre of a uniform circular disc of radius r and mass M2 so
that both are coplanar. The centre of mass of the combination
from the centre of the disc is (assume that the point of attachment
is at the origin)

(a) 1 2

1

L (M M )
2M


(b)
1

1 2

LM
2(M M )

(c)
1 2

1

2(M M )
LM


(d)
1

1 2

2LM
(M M )

.

4. Two circular loops A and B of radii rA and rB respectively are made
from the same uniform wire. The ratio of their moments of inertia
about axes passing through their centres and perpendicular to
their planes is IB/IA = 8. Then (rB/rA ) =
(a) 2 (b) 4
(c) 6 (d) 8.

5. Consider a body, shown in figure, consisting of two identical balls,
each of mass M connected by a light rigid rod. If an impulse
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J = MV is imparted to the body at one of its ends, what would be
its angular velocity?

(a) V/L (b) 2V/L
(c) V/3L (d) V/4L.

6. A turntable rotates about a vertical axis with a constant angular
speed . A circular pan rests on the turntable and rotates along
with the table. The bottom of the pan is covered with a uniform
thick layer of ice which also rotates with the pan. The ice starts
melting. The angular speed of the turntable
(a) decreases (b) increases
(c) remains the same as  (d) data insufficient.

7. Water is poured from a height of 10 m into an empty barrel at the
rate of 1 litre per second. If the weight of the barrel is 10 kg, the
weight indicated at time t = 60 s will be
(a) 71.4 kg (b) 68.6 kg
(c) 70.0 kg (d) 84.0 kg.

8. A force of 200 N is required to push a car of mass 500 kg slowly at
constant speed on a level road. If a force of 500 N is applied, the
acceleration of the car (in m s–2) will be
(a) zero (b) 0.2
(c) 0.6 (d) 1.0.

9. When a bucket containing water is rotated fast in a vertical circle
of radius R, the water in the bucket doesn’t spill provided
(a) The bucket is whirled with a maximum speed of 2 Rg .

(b) The bucket is whirled around with a minimum speed of 
R
2

g
.

(c) The bucket is having a r.p.m. of n = 2
900

R
g


.

(d) The bucket is having a r.p.m. of n = 2
3600

R
g


.

10. An insect is crawling up on the concave surface of a fixed

hemispherical bowl of radius R. If the coefficient of friction is 
1
3

,

then the height up to which the insect can crawl is nearly
(a) 5% of R (b) 6% of R
(c) 6.5% of R (d) 7.5% of R.
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1. A mass of 1 kg is just able to slide down the slope of an inclined
rough surface when the angle of inclination is 60°. The minimum
force necessary to pull the mass up the inclined plane is
(g = 10 m s–2) is __________ .

2. A block of mass m is resting on a smooth horizontal surface. One
end of a uniform rope of mass (m/3) is fixed to the block, which is
pulled in the horizontal direction by applying a force F at the other
end. The tension in the middle of the rope is __________ .

3. A motor car is moving with a speed of 20 m s–1 on a circular track
of radius 100 m. If its speed is increasing at the rate of 3 m s–1, its
resultant acceleration is __________ .

4. A body of mass 0.05 kg is observed to fall with an acceleration of
9.5 m s–2. The opposing force of air on the body is __________
(g = 9.8 m s–2).

5. A car of mass 1500 kg is moving with a speed of 12.5 m s–1 on a
circular path of radius 20 m on a level road. The value of coefficient
of friction between the tyres and road, so that the car does not
slip, is __________ .

1. Is it possible that a particle moving with constant speed may not
have a constant velocity? If yes, give an example.

2. A stone is rotated in a circle with a string. The string suddenly
breaks. In which direction will the stone move?

3. What is the source of centripetal force in the case of an electron
revolving around the nucleus?

4. What is the effect on the direction of the centripetal force when
the revolving body reverses its direction of motion?

5. Is it correct to say that the banking of roads reduces the wear and
tear of the tyres of automobiles? If yes, explain.

1. A stone tied to the end of a string is whirled in a horizotnal circle.
When the string breaks, the stone flies away tangentially. Why?

2. What is the acceleration of a train travelling at 40 m s–1 as it goes
round a curve of 160 m radius?

3. Is the angular velocity of rotation of hour hand of a watch greater
or smaller than the angular velocity of Earth’s rotation about its
own axis?
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      4. (i) What is the direction of the angular velocity of the minute
hand of a wall-clock?

(ii) When the car takes a turn round a curve, a passenger sitting
in the car tends to slide. To which side does the passenger
slide?

(iii) Comment on the statement ‘sharper the curve, more is the
bending’.

5. Why does a solid sphere have smaller moment of inertia than a
hollow cylinder of same mass and radius, about an axis passing
through their axes of symmetry?

1. A car weighs 1800 kg. The distance between its front and back
axles is 1.8 m. Its centre of gravity is 1.05 m behind the front axle.
Determine the force exerted by the level ground on each front
wheel and each back wheel.

2. Given the moment of inertia of a disc of mass M and radius R
about any of its diameters to be MR2/4, find its moment of inertia
about an axis normal to the disc and passing through a point on
its edge.

3. Torques of equal magnitude are applied to a hollow cylinder and a
solid sphere, both having the same mass and radius. The cylinder
is free to rotate about its standard axis of symmetry, and the
sphere is free to rotate about an axis passing through its centre.
Which of the two will acquire a greater angular speed after a
given time?

4. A solid cylinder of mass 20 kg rotates about its axis with angular
speed 100 rad s–1. The radius of the cylinder is 0.25 m. What is
the kinetic energy associated with the rotation of the cylinder?
What is the magnitude of the angular momentum of the cylinder
about its axis?

5. A child stands at the centre of a turntable with his two arms
outstretched. The turntable is set rotating with an angular speed
of 40 rpm. How much is the angular speed of revolution of the
child if he folds his hands back and thereby reduces his moment

of inertia to 
2
5  times the initial value? Assume that the turntable

rotates without friction.
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TOPIC

3 Momentum and its
Conservation

65

Newton introduced the concept of momentum to measure the
quantitative effect of force.

The total quantity of motion possessed by a moving body is known
as the momentum of the body. It is the product of the mass and velocity

of a body. It is denoted by p


. p


 = m v


Since mass m is always positive therefore the direction of p


 is the

same as that of v


.

In magnitude, | p


| = m | v


 | or p = mv

Since velocity is a vector and mass is a scalar therefore momentum

is a vector. Again, p


 has same direction as that of v


 because m is
always positive.

The cgs and SI units of momentum are g cm s–1 and kg m s–1

respectively.

The dimensional formula of momentum is [MLT –1].

(i ) When m is constant, p  v. This is shown in Fig. 3.1.

(ii ) When v is constant, p  m. This is shown in Fig. 3.2.

(iii ) When p is constant, then 
1 .v
m

  This is shown in Fig. 3.3.

P11CH3 
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m = constant

p

 = constant

m

p
p = constant

m

                               Fig. 3.1            Fig. 3.2      Fig. 3.3

Conceptual Problem 1. A car and a scooter are travelling with the
same speed. Which of the two has greater momentum?

Ans. Let M and m be the masses of the car and scooter respectively.
Let pc and ps be their respective momenta. Let v be the speed of both
scooter and car.

Now, pc = Mv and ps = mv,
c

s

p
p  = 

Mv
mv  = 

M
m

    M > m  pc > ps

So, the momentum of the car is greater than the momentum of the
scooter.

Conceptual Problem 2. A car and a scooter have the same
momentum. Which of the two has greater speed?

Ans. In this case,  p = Mvc = mvs

where vc and vs are the speeds of the car and scooter respectively.

Now, c

s

v
v

 = 
M
m .  m < M  vc < vs

So, the speed of the car is less than the speed of the scooter.

Conceptual Problem 3. Establish a general relation between
momentum p and kinetic energy Ek.

Ans. p = mv ; p2 = m2v2

or p2 = 2 m 
1
2 mv2 = 2m Ek   or  p = 2 Ekm
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(i) Statement. The time rate of change of momentum of a body
is directly proportional to the impressed force and takes place in
the direction of the force.

(ii) Explanation of Newton’s second law. The statement can be
divided into the following two parts:

(a) The time rate of change of momentum of a body is proportional to
the impressed force.

 A force acting on a body produces a certain change in the
momentum of the body. When the given force is doubled, the ‘change
in momentum’ of the body is also doubled. So, as the applied force is
increased, the rate of change of momentum of the body is also increased.

(b) The change of momentum takes place in the direction of the force.
Consider a body to be at rest. When a force is applied on this body,

the body will begin to move in the direction of the force. If a force is
applied on a moving body in the direction of motion of the body, then
there is an increase in the momentum of the body. However, if the
force is applied on a moving body in a direction opposite to the direction
of motion of the body, then there is a decrease in the momentum of the
body.

(iii) Formula for force. Let a constant external force F


 acting on a

body change its momentum from p


 to p


 + dp


 in time interval dt.

Then, the time rate of change of linear momentum is dp
dt



.

According to Newton’s second law of motion,

Fdp
dt




 or    F dp
dt




 or F dpk
dt






Here k is a constant of proportionality. The value of k depends upon
the units selected for the measurement of force. In both SI and cgs
system, the unit of force is so chosen that k = 1.

 F dp
dt





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The effectiveness of a force in producing motion depends not only
upon the magnitude of the force but also on the time for which the
force acts. When a large force acts for an extremely short duration,
neither the magnitude of the force nor the time for which it acts is
important. In such a case, the total effect of force is measured. The
total effect of force is called impulse.  It may also be defined as a
measure of the action of force. It is a vector quantity and is denoted by

J


. It is the product of force and the time for which the force acts.

Suppose a force F


 acts for a short time dt. The impulse of this force

is given by, d J


 = F


dt

If we consider a finite interval of time from t1 to t2, then the impulse
is given by,

J


= F
z dt

t

t

1

2

The right hand side of the above equation represents the impulse
of varying force.

J


= F


dt
t

t

1

2z  = F


 t
t

tL
NM

O
QP

1

2

 = F


(t2 – t1)

or J


= F


t where  t = t2 – t1
So, the impulse of a constant force F



 is equal to the product of the
force and time interval t for which the force acts.

The direction of J


 is the same as the direction of F


.

In cgs system, the unit of impulse is dyne second or g cm s–1.

In SI, it is measured in newton second or kg m s–1.

The dimensional formula of impulse is [MLT–1].

Impulse is measured by the total change in momentum that the
force produces in a given time.
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According to Newton’s second law of motion, F


 = dp
dt



where p


 is the momentum of body at any time t and F


 is the applied
force at that time.

dp


= F


dt

Integrating, 2

1

p

p
dp


  = 
0

F
t 

 dt

where 1p


 is the momentum at t = 0 and 2p


 is the momentum at time t.

L
NM

O
QPp p

p

1

2

= 
0

F
t 

 dt or

p2  – 


p1  = F

z dt
t

0

or
0

F
t

dt


 = 2p


 – 1p


...(1)

So, the impulse of a varying force is equal to the change in momentum
produced by the force.

If the applied force F


 is constant, then from equation (1),

F


 
0

t
dt = 2p



 – 1p


or F


 t
tL

NM
O
QP0

 = 2p


– 1p


or F


(t – 0) = 2p


 – 1p


or F


t = 2p


 – 1p


Thus, the impulse of a constant force is equal to the change of
momentum.

In the case of positive impulse acting on a body, there is an algebraic
increase in the momentum of the body. If the impulse is zero, then
there is no change in the momentum. In the case of negative impulse,
there is a decrease in the momentum.

These are based on the fact that if the total change in momentum
takes place in a very short time, then the force is large. If the change in
momentum takes place over a longer interval of time, then the force is
small.
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If two forces 1F


 and 2F


 act on a body to produce the same impulse,
then their respective times of application t1 and t2 should be such that

1F


 t1 = 2F


 t2
Following are the practical applications of impulse.
1. While catching a fast moving cricket ball, a player lowers his

hands. In this way, the time of catch increases and the force decreases.
So, the player has to apply a less average force. Consequently, the ball
will also apply only a small force (reaction) on the hands. In this way,
the player will not hurt his hands.

2. Automobiles are provided with spring systems. When the
automobile bumps over an uneven road, it receives a jerk. The spring
increases the time of the jerk, thereby reducing the force. This
minimises the damage to the automobile. [For the same reason, buffers
are provided between the bogies of a train.]

3. China plates are wrapped in paper or straw pieces while
packing. If, during transportation, the package gets a jerk, the time of
blow will be increased. This will reduce the force of blow. In this way,
the china plates will be saved from damage.

4. It is difficult to catch a cricket ball as compared to a tennis ball
moving with the same velocity. This is due to the fact that the cricket
ball is heavier than a tennis ball. The change in momentum is more in
the case of a cricket ball than in the case of a tennis ball. As a result,
more force is required to be applied in the case of a cricket ball.

5. When a moving vehicle strikes
against a wall, a large amount of force acts
on the vehicle. This is because the change
in momentum is very large and is brought
about in a very short interval of time. So, a
large amount of force acts on the vehicle and
the vehicle is damaged.

Example 1. Force-time graph for a body
is shown in Fig. 3.4. What is the velocity of
the body at the end of 11 second ? Mass of
the body is 7 kg. Assume the body to be
starting from rest. Fig. 3.4
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Solution. Area ABHO = 5  5 = 25 units
Area BDFH = 5(11 – 5) = 30 units

Area BCD = 
1
2   6  5 = 15 units

Total area under the curve = (25 + 30 + 15) units = 70 units
Since the area under F-t curve gives impulse i.e., change in momentum,

 mv – 0 = 70    or  v  = 
70
m

 = 
70
7

 m s–1 = 10 m s–1

Example 2.  A ball moving with a momentum of 5 kg m s–1 strikes
against a wall at an angle of 45° and is reflected at the same angle.
Calculate the change in momentum (in magnitude).

Solution. Let 1p


 and 2p


 be the
initial and final momenta respectively
of the ball.

Change in momentum = 2p


 – 1p


= 2p


 + (– 1p


) = AB


From the Fig. 3.5,

AB = 2 2
1 2p p

= 2 25 5  kg m s–1

or AB = 50  kg m s–1 = 7.07 kg m s–1

Forces acting on a body originate in other bodies that make up its
environment. This property of forces was first stated by Newton in his
third law of motion:

“To every action, there is always an equal (in magnitude) and
opposite (in direction) reaction.”

This law may also be stated as under:
“Action and reaction are equal in magnitude, opposite in

direction and act on different bodies.”

Fig. 3.5
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Consider interaction (action and reaction)

between two bodies A and B. Let BAF


be the

force exerted by A on B and ABF


the force
exerted by B on A (Fig. 3.6). Then, according
to Newton’s third law of motion,

BAF


 = – ABF


It is clear from this equation that the two forces are equal in
magnitude but opposite in direction. These forces of action and reaction
act along the line joining the centres of two bodies.

One of the two forces involved in the interaction between two bodies
may be called ‘action’ force. The other force will be called the ‘reaction’
force. The forces of action and reaction constitute a mutual simultaneous
interaction. It cannot be said that action is the cause of reaction or
reaction is the effect of action.

Newton’s third law of motion leads us to a very interesting fact about
forces. It is that the forces always exist in pairs. They never exist singly.

A collision is said to take place when either two bodies physically
collide against each other or when the path of one body is changed by
the influence of the other body.

As a result of collision, the momentum and kinetic energy of the
interacting bodies change. The forces involved in a collision are action-
reaction forces, i.e., the internal forces of the system. So, the total
momentum is conserved. Also, the total energy is conserved.

Elastic Collision. A collision is said to be an elastic collision if both
the kinetic energy and momentum are conserved in the collision.

During collision, the bodies are deformed. However, they regain
their original shape completely if the collision is elastic. The mechanical
energy is not converted into any other form of energy. In an elastic
collision, the forces of interaction are conservative in nature.

Fig. 3.6. Newton’s third law
of motion
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Inelastic Collision. A collision is said to be an inelastic collision if
the kinetic energy is not conserved in the collision. However the momentum
is conserved.

The kinetic energy lost in the collision appears in the form of heat
energy, sound energy, light energy, etc. The forces of interaction in an
inelastic collision are non-conservative in nature.

If a ball is dropped from a certain height and the ball is unable to
rise completely to its original height, then it would mean that ball has
lost some kinetic energy (which would appear as heat energy). This
would mean that collision is an inelastic collision.

(i ) Kinetic energy is not conserved. (ii) Total energy is conserved.
(iii) Momentum is conserved. (iv) Some or all of the forces involved
in the collision are non-conservative. (v ) A part of the mechanical
energy is converted into heat, light, sound, etc.

One-dimensional elastic collision  is that elastic collision in which
the colliding bodies move along the same straight line path before and
after the collision.

Consider two bodies A and B of masses m1 and m2 respectively
moving along the same straight line in the same direction [Fig. 3.7]. Let
v i1



 and v i2



 be their respective velocities such that | v i1



| > |v i2



|.

v1i v2i v1f v2f

A AB B

m1 m1m2 m2m1 m2

A B

BEFORE COLLISION DURING COLLISION AFTER COLLISION

 

Fig. 3.7. One-dimensional elastic collision

The two bodies will collide after some time.
During collision, the bodies will be deformed in the region of contact.

So, a part of the kinetic energy will be converted into potential energy.



Physics—XI74

The bodies will regain their original shape due to elasticity. The potential
energy will be reconverted into kinetic energy. The bodies will separate
and continue to move along the same straight line in the same direction
but with different velocities.

In an elastic collision, the kinetic energy onservation does not
hold at every instant of ollision. It holds after the collision is over.
Total linear momentum is conserved both in lastic and inelastic
collisions.
Total linear momentum is conserved at each instant of elastic and
inelastic collisions.
 Total energy is conserved in all collisions.

Let * 1fv


 and 2 fv


be the velocities of A and B respectively after the

collision.

Applying the law of conservation of momentum,

total momentum before collision = total momentum after collision

 m1v1i + m2v2i = m1v1f + m2v2f  (in magnitude)

or m1 (v1i – v1f) = m2 (v2f – v2i) ...(1)

Since the collision is elastic therefore kinetic energy will be
conserved.

 Kinetic energy before collision = Kinetic energy after collision


2 2

1 1 2 2
1 1
2 2i im v m v = 2 2

1 1 2 2
1 1
2 2f fm v m v

or 2 2
1 1 2 2i im v m v  = 2 2

1 1 2 2f fm v m v

or 2 2
1 1 1( )i fm v v = 2 2

2 2 2( )f im v v

or 1 1 1 1 1( )( )i f i fm v v v v  = 2 2 2 2 2( )( )f i f im v v v v  ...(2)

Dividing (2) by (1), we get  1 1 2 2i f f iv v v v  

or 1 2 2 1i i f fv v v v   ...(3)

*The velocity v f2


 has to be greater than velocity v f1


 because otherwise the two
colliding bodies cannot separate.
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*(v1i – v2i) is the magnitude of the relative velocity of A w.r.t. B.
**(v2f – v1f) is the magnitude of relative velocity of B w.r.t. A. It may be
noted that the direction of relative velocity is reversed after the collision.

Relative velocity of A w.r.t. B before collision
= Relative velocity of B w.r.t. A after collision

or       Relative velocity of approach = Relative velocity of separation
In one-dimensional elastic collision, the relative velocity of approach

before collision is equal to the relative velocity of separation after the
collision.

From equation (3), v2f = v1i – v2i + v1f

From equation (1), m1(v1i – v1f ) = m2(v1i – v2i + v1f – v2i)

or 1 1 1 1i fm v m v  = 2 1 2 12i fm v m v  + 2 1 fm v

or – 1 1 2 1f fm v m v  = – m1v1i + m2v1

 

i – 2m2v2i

or (m1 + m2) v1f = (m1 – m2) v1i + 2m2v2i

or v1f = 1 2

1 2

m m
m m




v1i + 2

1 2

2m
m m

v2i  ...(4)

Again, from equation (3),   v1f = v2f  – v1i + v2i

Substituting this value in equation (1) and simplifying, we get

                   2 1 1
2 2 1

1 2 1 2

2
f i i

m m mv v v
m m m m


 

 
...(5)

Equations (4) and (5) give the final velocities of the colliding bodies
in terms of their initial velocities.

In a nuclear reactor, the neutrons are produced from the fission of
Uranium. These neutrons are very fast. So, they cannot be used to
produce more fission. Thus, they have to be quickly slowed down. This
is done by making them collide against a target. If the targets are
electrons, then the speed of neutrons will remain practically unchanged.

* ( 1iv


 – 2iv


) is the relative velocity of approach.

** (v f2


 – v f1


) is the relative velocity of separation.
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This is because neutrons are massive as compared to electrons. If the
targets are lead nuclei, then the neutrons merely bounce back with
nearly the same speed. This is because neutrons are much lighter
than lead nuclei.

If the targets are protons, then the neutrons are sufficiently slowed
down because the masses of two colliding particles are comparable.

The protons are available in water. So, water can be used as a
moderator in a nuclear reactor. But neutrons tend to constitute stable
nuclei with protons. So, instead of water, we use heavy water (D2O) as
moderator. The nucleus of deuterium contains one neutron and one
proton only.

Example 3. Two bodies of masses 50 g and 30 g moving in the same
direction, along the same straight line with velocities 50 cm s–1 and 30
cm s–1 respectively suffer one-dimensional elastic collision. Calculate
their velocities after the collision.
Solution. Mass, m1 = 50 g ; Mass, m2 = 30 g ;

Velocity, v1i = 50 cm s–1 ; Velocity, v2i = 30 cm s–1

v1f = ?, v2f = ?

                      
1 2 2

1 1 2
1 2 1 2

2
f i i

m m mv v
m m m m


 

 

= 
150 30 2 3050 30 cms

50 30 50 30
  

   
  

= 35 cm s–1

Again,
2 1 1

2 2 1
1 2 1 2

2
f i i

m m mv v v
m m m m


 

 

= 
130 50 2 5030 50 cms

50 30 50 30
  

   
  

= 55 cm s–1

Example 4. A body A of mass 2 kg moving with a velocity of
25 m s–1 in the east direction collides elastically with another body B of
mass 3 kg moving with velocity of 15 m s–1 westwards. Calculate the
velocity of each ball after the collision.
Solution. m1 = 2 kg, v1i = 25 m s–1, m2 = 3 kg ;

*v2i = – 15 m s–1, v1f = ?, v2f = ?

* The initial velocity of the body B is in a direction opposite to that of the initial
velocity of body A.
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                      v1f =
1 2

1
1 2

i
m m v
m m




 + 

2
2

1 2

2
i

m v
m m

= 12 3 2 325 15 ms
2 3 2 3

  
    

  
= – 23 m s–1

v2f =
2 1

2
1 2

i
m m v
m m




 + 

1
1

1 2

2
i

m v
m m

=
13 2 2 215 25 ms

3 2 3 2
  

    
  

= 17 m s–1 

The ratio of relative speed of separation after collision and the
relative speed of approach before collision is a constant. This constant
is called coefficient of restitution  or coefficient of resilience. It is
denoted by e. It is a measure of the degree of elasticity of a collision. Its
value depends upon the nature of the colliding bodies.

The coefficient of restitution is defined as the ratio of the magnitude
of relative velocity of separation after collision to the magnitude of relative
velocity of approach before collision.

e = 
2 1

1 2

| |

| |

f f

i i

v v

v v









(i ) In a perfectly elastic collision, the relative velocity of separation
is equal to the relative velocity of approach.

 e = 1

Note that there is no loss of kinetic energy. A body dropped from a
certain height shall rebound to the same height.

(ii) In a perfectly inelastic collision, the bodies stick together after
the collision. The relative velocity of separation is zero.

 e = 0
(iii) In general, the bodies are neither perfectly elastic nor perfectly

inelastic. In that case,
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velocity of separation = e(velocity of approach), where 0 < e < 1.
For two lead balls, e = 0.20 and for the glass balls, e = 0.95.
(iv ) If e > 1, then the collision is superelastic collision. [An example

of superelastic collision is that of a cracker which is forcefully struck
against the ground.]

A collision is said to be one-dimensional inelastic collision if the
momentum is conserved with some loss of kinetic energy and the colliding
bodies continue to move along the same straight line path before and
after the collision.

Consider two bodies A and B of masses m1 and m2 moving, in the

same direction, along the same straight line path with velocities 1iv


and 2iv


 respectively such that | 1iv


| > | 2iv


|. The two bodies A and B

undergo head-on collision. After the collision, they continue to move

along the same straight line with velocities 1fv


 and 2 fv


respectively
without any change in direction.

Using conservation of momentum,
m1v1i + m2v2i = m1v1f + m2v2f ...(1)

If e be the coefficient of restitution, then

e = 
2 1

1 2

f f

i i

v v
v v





or v2f = v1f + e(v1i – v2i) ...(2)
Substituting the value of v2f in equation (1),

m1v1i + m2v2i = m1v1f + m2[v1f + e(v1i – v2i)]
or (m1 + m2) v1f = (m1 – em2) v1i + (1 + e) m2v2i

or v1f = 1 2

1 2

m em
m m




v1i + 

2

1 2

(1 )e m
m m



v2i ...(3)

Similarly, v2f = 2 1

1 2

m em
m m




v2i + 

1

1 2

(1 )e m
m m



v1i ...(4)
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Consider a system of n particles of masses m1, m2, ..., mn and

velocities 1v


, 2v


, ......, nv


 respectively. The particles may be interacting
and have external forces acting on them. The linear momentum of the

first particle is m1 1v


, of the second particle is m2 2v


 and so on.

For the system of n particles, the linear momentum of the system is
defined to be the vector sum of momenta of all individual particles of
the system.

P


 = 1p


 + 2p


 + ... + np


 = m1 1v


 + m2 2v


 + ...... + mn nv


But m1 1v


 + m2 2v


 + ...... + mn nv


 = M V


 P


 = M V


...(1)

Thus, the total momentum of a system of particles is equal to the
product of the total mass of the system and the velocity of its centre of
mass.

Differentiating Eq. (1) with respect to time,

Pd
dt



= M Vd
dt



 = M A


But M A


= .Fext



where .Fext


 represents the sum of all external forces acting on the

particles of the system.


Pd

dt



= .Fext


...(2)

This is the statement of Newton’s second law extended to a system
of particles.

Suppose now, that the sum of external forces acting on a system of
particles is zero. Then from Eq. (2)
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Pd
dt



 = 0 or P


 = constant ...(3)

Thus, when the total external force acting on a system of particles
is zero, the total linear momentum of the system is constant. This is
the law of conservation of the total linear momentum of a system of
particles.

Rewriting Eq. (3),

M V


 = constant

or V


 = constant ( M is constant.)
Thus, if the total external force acting on the system is zero, the

centre of mass moves with a constant velocity i.e., moves uniformly in a
straight line like a free particle. This is Newton’s first law of motion.

Following are examples of motion of centre of mass:
1. A projectile, following the usual parabolic trajectory, explodes

into fragments midway in air. The forces leading to the explosion are
internal forces. They contribute nothing to the motion of the centre of
mass. The total external force, namely, the force of gravity acting on the
body, is the same before and after the explosion. The centre of mass
under the influence of the external force continues, therefore, along
the same parabolic trajectory as it would have followed if there were no
explosion.

In this illustration, the forces
of explosion are all internal forces.
These forces are exerted by part
of the system on other parts of the
system. These forces may change
the momenta of all the individual
fragments from the values they
had when they made up the
projectile. But the internal forces
cannot change the total vector
momentum of the system. It is

O

Y

Xx1

Parabolic path
of the projectile Explosion

Path of the CM
of fragments

Fig. 3.8. The centre of mass of the fragments
of the projectile continues along the same
parabolic path which it would have followed if
there were no explosion
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only the external force which can change the total momentum of the
system. In the given problem, the only external force is that due to
gravity. The change in the total momentum of the system due to gravity
is the same whether the shell explodes or not.

2. Consider the Earth-Moon system. Both
the Earth and the Moon move in circles about
their centre of mass, always being on opposite
sides of it. The centre of mass moves along an
elliptical path around the Sun. The forces of
attraction between Earth and Moon are internal
to the Earth-Moon system. On the other hand,
the Sun’s attraction of both Earth and Moon are
external forces.

After having considered a system of particles which moves under the
influence of internal and external forces, we can now take up the
rotational motion of rigid body. A rigid body is a body with a perfectly
definite and unchanging shape. The geometrical shape and size of rigid
body do not undergo any change during motion of rigid body. A rigid
body may be regarded as an assembly of point masses. The mutual
distances among different point masses do not change during the motion
of the rigid body.

The centre of mass of a rigid body is a point whose position is
fixed with respect to the body as a whole. This point may or may not
be within the body. The position of the centre of mass of a rigid body
depends upon the following two factors.

(i ) shape of the body (ii ) distribution of mass in the body.
It is easy to locate the centre of mass of a symmetrical rigid body

having uniform distribution of mass. In most of such cases, the centre
of mass is at the geometrical centre.

E

M
Centre
of mass

Sun

Fig. 3.9. Centre of mass
of Earth-Moon system
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Position of Centre of Mass of Some Regular Bodies

S. No.        Shape of body          Position of centre of mass

   1. Uniform rod Centre of rod

   2. Plane rectangular or Point of intersection of diagonals
square lamina

   3. Plane triangular lamina Point of intersection of the medians of
triangle

   4. Uniform circular ring Centre of ring

   5. Uniform circular disc Centre of disc

   6. Uniform solid sphere Centre of the solid sphere

   7. Uniform hollow sphere Centre of the hollow sphere

   8. Uniform hollow cylinder Midpoint of the axis of the hollow cylinder

   9. Uniform solid cylinder Midpoint of the axis of the solid
cylinder

(i) Statement. If the vector sum of the external forces acting on
a system is zero, then the total momentum of the system is
conserved i.e., remains constant.

The concept of conservation of momentum is particularly important
in situations in which we have two or more interacting bodies. The law
of conservation of momentum is a direct consequence of Newton’s third
law. This law does not depend on the detailed nature of the internal
forces that act between the members of the system.

For any system of particles, the forces that the particles of the
system exert on each other are called internal forces.
The forces exerted on any part of the system by some object
outside the system are called external forces.
A system is said to be isolated if the net external force acting
on the system is zero.
A system is said to be closed if no particles enter or leave the
system.
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For a closed, isolated system,

p


= constant ...(1)

 ip


= fp


...(2)

The total linear momentum at some initial time ti = total linear
momentum at some later time tf.

Equations (1) and (2) are vector equations. Each is equivalent to
three equations corresponding to the conservation of linear momentum
in three mutually perpendicular directions. Depending on the forces
acting on a system, linear momentum might be conserved in one or
two directions but not in all directions. If the component of the net external
force on a closed system is zero along an axis, then the component of
the linear momentum of the system along that axis cannot change.

(ii) Derivation of the law of conservation of momentum from
Newton’s second law of motion.

According to Newton’s second law of motion, the time rate of change
of momentum is equal to the applied force.

If the system is isolated, then F


 = 0.

In that case, d
dt

 ( p


) = 0

 p


 = constant

[Differential coefficient of an isolated constant is zero.]
This leads us to the following statement of the law of conservation

of momentum.
“In the absence of external forces, the total momentum of the system

is conserved”.
(iii) Derivation of the law of conservation of momentum from

Newton’s third law of motion.
Consider an isolated system consisting of two bodies A and B of

masses m1 and m2 respectively [Fig. 3.10]. Let the two bodies be moving
along a straight line in the same direction. Let their respective velocities

be 1iv


 and 2iv


 such that 1iv


 is greater than 2iv


. The two bodies will
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collide after some time. Let 1fv


 and 2 fv


be the velocities of A and B
respectively after the collision.

Fig. 3.10. One-dimensional collision

Before collision

Momentum of body A = m1 1fv


 ; Momentum of body B = m2 2iv


 Total momentum of system = m1 1iv


 + m2 2iv


After collision
Momentum of body A = m1 1fv



; Momentum of body B = m2 2 fv


 Total momentum of system = m1 1fv


 + m2 2 fv


Change in momentum of body A = m1 1fv


 – m1 1iv


Change in momentum of body B = m2 2 fv


– m2 2iv


During collision, the body A exerts an average force BAF


on body B.
According to Newton’s third law of motion, the body B will exert an

average force ABF


 on body A such that

BAF


 = – ABF


Let t be the duration of collision.

Then, impulse acting on B = BAF


t; Impulse acting on A = ABF


t

But impulse = change in momentum

 BAF


t = m2 2iv


 – m2 2 fv


 and ABF


t = m1 1fv


 – m1 1iv


But BAF


t = – ABF


 t

  m2 2 fv


– m2 2iv


= – (m1 1fv


 – m1 1iv


)

or m2 2 fv


+ m1 1fv


= m1 1iv


 + m2 2iv

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So, total momentum of system after collision is equal to the total
momentum of system before collision.

This leads to the following statement of the law of conservation of
momentum.

“The total vector sum of the momenta of bodies, in an isolated
system, along any straight line remains conserved and is
unchanged due to the mutual action and reaction between the
bodies in the system.”

This law is universal. It is true not only for collisions between
astronomical bodies but also for collisions between atomic particles.

(i ) Recoil of a Gun. Let the gun and the bullet in its barrel constitute
one isolated system.

To begin with, both the gun
and the bullet are at rest. So, the
momentum of the system, before
firing, is zero.

When the bullet is fired, it
moves in the forward direction
and the gun kicks backward.

Let, m = mass of bullet ; M = mass of gun ; v


 = velocity of bullet ;

V


 = velocity of gun.

Total momentum of system after firing = M V


 + mv


No external forces have acted on the system. So, law of conservation
of momentum can be applied.

 M V


 + mv


= 0 or M V


 = – mv


or  V


= – 
M
m

v


The negative sign shows that the velocity V


 of recoil is opposite to
the velocity of the bullet, i.e., if the bullet moves in the forward direction,
the gun moves in the backward direction.

Fig. 3.11. Recoil of gun
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The mass M of the gun is very large as compared to the mass m of
the bullet. So, the velocity of recoil is very small as compared to the
velocity of the bullet.

(ii ) Machine Gun firing
Bullets. Suppose a machine
gun mounted on a car is firing
n bullets in time t. Let m and
v


 be the mass and velocity
respectively of each bullet
[Fig. 3.12].

Total momentum in the
forward direction = n  mv



The reaction of this momentum will be in the backward direction.
This reaction will set the car in motion to the right. In order to hold the
car in position, the accelerator of the car shall have to be suitably
pressed. The applied force F



 should be such that

F


t = – nmv


  [Impulse = change of momentum]

(iii ) Explosion of a Bomb.  Suppose a bomb is at rest as shown in
Fig 3.13 (a). Its momentum will be zero. Let the bomb explode into five
fragments of masses m1, m2, m3, m4 and m5 [Fig. 3.13 (b)].

Let their respective velocities be 1v


, 
2v



, 3v


, 4v


 and 5v


. Then their

respective momenta will be given by

1p


 = m1 1v


, 2p


 = m2 2v


, 3p


 = m3 3v


, 4p


 = m4 4v


 and 5p


 = m5 5v


               

Fig. 3.13. Explosion of a bomb

Fig. 3.12. Machine gun firing bullets
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No external force has acted on the system. Therefore, the law of
conservation of momentum can be applied.

 Momentum after explosion = Momentum before explosion

 1p


 + 2p


 + 3p


 + 4p


 + 5p


 = 0


The sum of the five momenta vectors is zero. So, they can be
represented both in magnitude and direction by the five sides of a
closed polygon, all taken in the same order. This is shown in Fig. 3.13(c).

If the bomb explodes into two fragments of equal masses, then the
fragments will move with equal speeds in opposite directions.

Consider an isolated system consisting of n particles of masses m1,

m2, m3, ......, mn. Let 1v


, 2v


, 3v


, ......, nv


be their respective velocities.

The total linear momentum P


 of the system is equal to the vector
sum of the linear momenta of all the particles in the system.

Then P


 = m1 1v


 + m2 2v


 + m3 3v


 + ...... + mn nv


or P


 = (m1 + m2 + m3 + ...... + mn) 
1 1 2 2 3 3

1 2 3

.....
.....

n n

n

m v m v m v m v
m m m m

    
    

 
    

 

But m1 + m2 + m3 + ...... + mn = M (total mass of system)

and         1 1 2 2 3 3
. .

1 2 3

.....
V

.....
n n

c m
n

m v m v m v m v
m m m m

   
   


   

where . .Vc m



 is the velocity of centre of mass of the system.

 P


= M . .Vc m



Since the given system is isolated therefore no external force will
act. According to the law of conservation of momentum, the total

momentum P


 should be constant.
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 M . .Vc m



= constant.

CONCLUSION
When no external force acts on the system, the centre of mass of the
system has a constant velocity.

Example 5. A gun weighing 10 kg fires a bullet of 30 g with a velocity
of 330 m s–1. With what velocity does the gun recoil ? What is the combined
momentum of the gun and bullet before firing and after firing?
Solution. Mass of gun, M = 10 kg

Mass of bullet, m = 30 g = 0.03 kg
Velocity of bullet, v = 330 m s–1

Velocity of recoil, V = ?
In magnitude, momentum of gun = momentum of bullet

 MV = mv or V = 
M

mv

 V = 
0.03 330

10


 m s–1  = 0.99 m s–1

Combined momentum of gun and bullet before firing is zero. Since
no external force has acted therefore momentum must be conserved.
So, the combined momentum of gun and bullet after firing is also zero.

Example 6. A hunter has a machine gun that can fire 50 g bullets with
a velocity of 900 m s–1. A 40 kg tiger springs at him with a velocity of
10 m s–1. How many bullets must the hunter fire into the tiger in order to
stop him in his track?

Solution.
Mass of bullet, m = 50 g = 0.05 kg
Velocity of bullet, v = 900 m s–1

Mass of tiger, M = 40 kg
Velocity of tiger, V = 10 m s–1

Let n be the number of bullets required to be pumped into the tiger
to stop him in his track.

If the bullets and the tiger are supposed to constitute one isolated
system, then the magnitude of the momentum of n bullets should be
equal to the magnitude of momentum of the tiger.
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 n  m v = MV or n = 
MV
mv

 n = 
40 10

0.05 900



 = 8.89  9 

(i) Moment of inertia of a rigid body about a fixed axis is defined
as the sum of the products of the masses of all the particles constituting
the body and the squares of their respective distances from the axis of
rotation. It is a scalar quantity.

Let YY be the axis about which the rigid
body is rotating [Fig. 3.14]. Let the body be
composed of n particles of masses m1, m2, ......,
mn. Let r1, r2, ......, rn be their respective
distances from the axis of rotation. The
moment of inertia of the rigid body about the
given axis YY is given by

   I = m1r1
2 + m2r2

2 + ...... + mnrn
2 = 

2
1 1

1

n

i
m r





(ii) In cgs system, the unit of moment of
inertia is g cm2. In SI, moment of inertia is measured in kg m2.

(iii) Moment of inertia depends on the following factors:
1. Mass of the body.

2. Position of the axis of rotation.

3. Distribution of mass about the axis of rotation.

(a) The rotational analogue of momentum is moment of momentum.
It is also referred to as angular momentum. This quantity is a measure
of the twisting or turning effect associated with the momentum of the
particle.

Fig. 3.14. Moment of inertia
of a rigid body
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The angular momentum (or moment of momentum) about an axis
of rotation is a vector quantity, whose magnitude is equal to the product
of the magnitude of momentum and the perpendicular distance of the
line of action of momentum from the axis of rotation and its direction is
perpendicular to the plane containing the momentum and the
perpendicular distance.

Fig. 3.15 shows a particle having

linear momentum p


. Its position vector

with reference to point O is r


. The
perpendicular distance of the line of
action of momentum from O is d. The
angular momentum of the particle about
an axis passing through O and
perpendicular to the plane of the paper
is given by:

L = pd
The cgs and SI units of L are g cm2 s–1 and kg m2 s–1 respectively. Its

dimensional formula is [ML2T–1].
(b) Angular Momentum

in Vector Notation. Fig. 3.16

shows position vector r


 and

momentum p


 of a particle P
in XOY plane. The angular
momentum of the particle P
with respect to the origin O is
given by:

                 L


 = r


 × p


The direction of L


 is
obtained by applying the
right-hand rule for the vector product of two vectors. In this case, L



acts along OZ.
The angular momentum is taken as positive for anti-clockwise

rotation and negative for clockwise rotation.

Fig. 3.15

Fig. 3.16
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The magnitude of L


 is given by, L = rp sin  ...(1)

where r is the magnitude of the position vector r


 i.e., the length OP, p

is the magnitude of momentum p


 and  is the angle between r


 and

p


 as shown.

Now, sin  = 
d
r  or d = r sin 

From eqn. (1), L = p (r sin ) = pr

 = pd

Again, L = r (p sin ) = rp

 = rp



 (i) If r = 0, then L = 0. A particle
at O has zero angular momentum
about O.

(ii) If  = 0° or 180°, then sin  = 0.
          L = rp sin  = 0
In this case, the line of action of

the momentum passes through the
point O. Thus, if the line of action of
momentum passes through point O,
the angular momentum is zero.

(iii) If  = 90°, then sin  = sin
90° = 1 (max. value). So, L is
maximum.

Lmax. = rp

We know that, L


 = r


  p


Differentiating both sides w.r.t. t, we get

Ld
dt



= 
d
dt  ( r


 × p



) =  r


 × +dp dr
dt dt

 

 × p


or Ld
dt



= r


 × 
d p
dt



 + v


 × p


Fig. 3.17
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or                    Ld
dt



  = r


 × d p
dt



  [  v


 × p


 = v


  mv


 = m(v


 × v


) =  0]

According to Newton’s second law of motion, d p
dt



 = F



Ld

dt



= r


 × F


or
Ld

dt



 = 


t ...(1)

So, the time rate of change of the angular momentum of a particle is
equal to the torque acting on it. This result is the rotational analogue of
the statement—“The time rate of change of the linear momentum of a
particle is equal to the force acting on it.”

Like all vector equations, equation (1) is equivalent to three scalar

equations, namely, tx = 
Lxd
dt , ty = 

Lyd
dt

and tz = 
Lzd
dt

So, the x-component of the applied torque is given by x-component
of the change with time of the angular momentum. Similar results
hold for the y and z-directions.

The total angular momentum of a system of particles about a given
point is the vector sum of the angular momenta of individual particles
about the given point. For a system of n particles,

L


= 1L


 + 2L


 + ...... + Ln


 = 

1
L

n

i
i







The angular momentum of the ith particle is given by

Li


= ir


 × ip


where ir


 is the position vector of the ith particle with respect to the

given origin and ip


 (= mi iv


) is the linear momentum of the ith particle.

Now, L


= 
1 1
L

n n

i i i
i i

  

 

  
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This is a generalisation of the definition of angular momentum for a
single particle to a system of particles.

Now,
Ld

dt



= 
d
dt

 ( Li


) = 

1 1

Ln n
i

ii i

d
dt 






t 

where i

t  is the torque acting on the ith particle;

A rigid body is said to be in mechanical equilibrium if both its
linear momentum and angular momentum are not changing with
time, or equivalently the body has neither linear acceleration nor
angular acceleration.

A rigid body such as a chair, a bridge or building is said to be in
equilibrium if both the linear momentum and the angular momentum
of the rigid body have a constant value. When a rigid body is in
equilibrium, the linear acceleration of its centre of mass is zero. Also,
the angular acceleration of the rigid body about any fixed axis in the
reference frame is zero.

For the equilibrium of a rigid body, it is not necessary that the rigid
body is at rest. However, if the rigid body is at rest, then the equilibrium
of the rigid body is called static equilibrium.

(i) First Condition for Equilibrium.  The translational motion of
the centre of mass of a rigid body is governed by the following equation :

 .Fext
 = 

d
dt

( p


)

A rigid body is said to be in translational equilibrium if it remains
at rest or moves with a constant velocity in a particular direction.

Here  .Fext
  is the vector sum of all the external forces that act on

the rigid body.

For equilibrium, p


 must have a constant value.  
d
dt

( p


) = 0

  .Fext
 = 0
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This vector equation is equivalent to three scalar equations:

                          
1

F 0
n

ix
i 

 , 
1

F 0
n

iy
i 

 , 
1

F 0
n

iz
i 

 ...(1)

T h is lea d s u s to  the first condition for the equilibrium of rigid
bodies.

“The vector sum of all the external forces acting on the rigid
body must be zero”.

(ii) Second Condition for Equilibrium. The rotational motion of a
rigid body is governed by the following equation:

 .ext

t = Ld

dt



Here  .ext

t  represents the vector sum of all the external torques

that act on the body.

For equilibrium, L


 must have a constant value.  
d
dt

 ( L


) = 0

  .ext

t = 0

This vector equation can be written as three scalar equations:
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0
n
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t  ...(2)

This leads us to the second condition for the equilibrium of rigid
bodies.

“The vector sum of all the external torques acting on the rigid
body must be zero.”

1. The angular velocity of a planet around the Sun increases
when it comes near the Sun.

When a  planet revolving around the Sun in an elliptical orbit comes
near the Sun, the moment of inertia of the planet about the Sun
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decreases. In order to conserve angular momentum, the angular velocity
shall increase. Similarly, when the planet is away from the Sun, there
will be a decrease in the angular velocity.

2. The speed of the inner layers of the whirlwind in a tornado is
alarmingly high.

In a tornado, the moment of inertia of air will go on decreasing as the
air moves towards the centre. This will
be accompanied by an increase in
angular velocity such that the angular
momentum is conserved.

3. A diver jumping from a spring
board performs somersaults
in air.

When a diver jumps from spring
board, he curls his body by rolling in
his arms and legs. This decreases
moment of inertia and hence
increases angular velocity. He then
performs somersaults. As the diver is
about  to touch the surface of water,
he stretches out his limbs. By so
doing, he increases his moment of
inertia, thereby reducing his angular
velocity.

4. A ballet dancer can vary her angular speed by outstretching
her arms and legs.

Slow
rotation

Fast
rotation

Fig. 3.19. Ballet dancer making use of law of conservation of angular momentum

Spring board

Water

Fig. 3.18. Diver performing somersaults
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A ballet dancer [Fig. 3.19] makes use of the law of conservation of
angular momentum to vary her angular speed. Suppose a ballet dancer
is rotating with her legs and arms stretched outwards. When she
suddenly folds her arms and brings the stretched leg close to the other
leg, her angular velocity increases on account of decrease in moment of
inertia [Fig. 3.19].

5. A man carrying heavy weights in his hands and standing on
a rotating table can vary the speed of the table.

Fast
rotation

Slow
rotation

Fig. 3.20
Suppose a man is standing on a rotating table with his arms

outstretched. Suppose he is holding heavy weights in his hands. When
the man suddenly folds his arms, his angular velocity increases on
account of the decrease in moment of inertia [Fig. 3.20].

I. Unless an external torque is applied to it, a body in a state of
rest or uniform rotational motion about its fixed axis of rotation remains
unchanged.

II. The rate of change of angular momentum of a body about a
fixed axis of rotation is directly proportional to the torque applied and
takes place in the direction of the torque.

III. When a torque is applied by one body on another, an equal
and opposite torque is applied by the latter on the former about the
same axis of rotation.
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Do the review exercises in your notebook.

1. A ball of mass M falls from a height h on a floor for which the
coefficient of restitution is e. The height attained by the ball after
two rebounds is
(a) e2 h (b) eh2

(c) e4 h (d) h/e4.
2. Consider the following two statements:

A. Linear momentum of a system of particle is zero. Then
B. Kinetic energy of a system of particles is zero. Then
(a) A does not imply B but B implies A.
(b) A implies B and B implies A.
(c) A does not imply B and B does not imply A.
(d) A implies B but B does not imply A.

3. A spring of spring constant 5 × 103 N m–1 is stretched initially by
5 cm from the unstretched position. Then the work required to
stretch it further by another 5 cm is
(a) 25.00 N m (b) 6.25 N m
(c) 12.50 N m (d) 18.75 N m.

4. A neutron makes a head-on elastic collision with a stationary
deuteron. The fractional energy loss of the neutron in the collision
is
(a) 16/81 (b) 8/9
(c) 8/27 (d) 2/3.

5. A stationary particle explodes into two particles of masses m1 and
m2 which move in opposite directions with velocities v1 and v2 . The
ratio of their kinetic energies E1/E2 is
(a) m2/m1 (b) m1/m2

(c) 1 (d) m1v2/m2v1.
6. A body of mass m has a kinetic energy equal to one-fourth kinetic

energy of another body of mass m/4. If the speed of the heavier
body is increased by 4 m s–1, its new kinetic energy equals the
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original kinetic energy of the lighter body. The original speed of
the heavier body in m s–1 is
(a) 8 (b) 6
(c) 4 (d) 2.

7. A toy gun has a spring of force constant k. After charging the
spring by compressing it through a distance of x, the toy releases
a shot of mass m vertically upwards. Then the shot will travel a
vertical height of

(a) 2
2mg
kx (b)

2kx
mg

(c)
kx
mg (d)

2

2
kx
mg .

8. A particle moves in a straight line with retardation proportional to
its displacement. Its loss of kinetic energy for any displacement x
is proportional to
(a) x2 (b) ex

(c) x (d) loge x.
9. An automobile travelling with a speed of 60 km h–1, can brake to

stop within a distance of 20 m. If the car is going twice as fast, i.e.,
at 120 km h–1, the stopping distance will be
(a) 20 m (b) 40 m
(c) 60 m (d) 80 m.

10. A uniform chain of length 2 m is kept on a table such that a length
of 60 cm hangs freely from the edge of the table. The total mass of
the chain is 4 kg. What is the work done in pulling the entire
chain on the table ?
(a) 7.2 J (b) 3.6 J
(c) 120 J (d) 1200 J.

1. A body of mass 3 kg is under a constant force which causes a

displacement s (in m) in it, given by the relation s = 
1
3 t2, where t

is in second. Work done by the force in 2 s is __________ .
2. A 2 kg block slides on a horizontal floor with a speed of 4 m s–1. It

strikes a uncompressed spring, and compresses it till the block is
motionless. The kinetic friction force is 15 N and spring constant
is 10,000 N m–1. The spring compresses by __________ .
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3. A spherical ball of mass 20 kg is stationary at the top of a hill of
height 100 m. It rolls down a smooth surface to the ground, then
climbs up another hill of height 30 m and finally rolls down to a
horizontal base at a height of 20 m above the ground. The velocity
attained by the ball is __________ .

4. A bread gives a boy of mass 40 kg an energy of 21 kJ. If the efficiency
is 28%, then the height which can be climbed by him using this
energy is nearly __________ .

5. A windmill converts wind energy into electrical energy. If v is the
wind speed, electrical power output is proportional to __________ .

1. A rough inclined plane is placed on a cart moving with a constant
velocity u on horizontal ground. A block of mass M rests on the
incline. Is any work done by force of friction between the block
and incline? Is there then a dissipation of energy?

2. Why is electrical power required at all when the elevator is
descending? Why should there be a limit on the number of
passengers in this case?

3. A body is being raised to a height h from the surface of earth.
What is the sign of work done by
(a) applied force
(b) gravitational force?

4. Calculate the work done by a car against gravity in moving along a
straight horizontal road. The mass of the car is 400 kg and the
distance moved is 2 m.

5. A body falls towards Earth in air. Will its total mechanical energy
be conserved during the fall? Justify.

1. The potential energy of two atoms separated by a distance x is

given by U =  – 6
A
x  where A is a positive constant. Find the force

exerted by one atom on another atom.
2. A ball, dropped from a height of 8 m, hits the ground and bounces

back to a height of 6 m only. Calculate the fractional loss in kinetic
energy.

3. A particle of moving in a circle with centripetal force – 2
K
r

. What is

the total energy associated?
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4. A particle of mass m strikes on ground with angle of incidence 45°.
If coefficient of restitution e = 1/ 2 , find the velocity of reflection
and angle of reflection?

5. A body of mass m falls from a height h and collides with another
body of same mass. After collision, the two bodies combine and
move through distance d till they come to rest. Find the work
done against the resistive force.

1. A rubber ball of mass 50 g falls from a height of 1 m and rebounds
to a height of 50 cm. Calculate the impulse and the average force
between the ball and the ground, if the time during which they
are in contact was 0.1 second.

2. Two 22.7 kg ice sleds A and B are placed a short distance apart,
one directly behind the other, as shown in figure below. A 3.63 kg
cat, standing on one sled, jumps across to the other and
immediately back to the first. Both jumps are made at a speed
of 3.05 m s–1 relative to the ice. Find the final speeds of the two
sleds.

3. A bullet of mass 7 g is fired into a block of metal weighing 7 kg.
The block is free to move. After the impact, the velocity of the
bullet and the block is 0.7 m s–1. What is the initial velocity of
the bullet ?

4. A block of mass m moving at speed v collides with
another block of mass 2 m at rest. The lighter block
comes to rest after the collision. Find the
coefficient of restitution.

5. Two bodies of masses m1 and m2 (< m1) are
connected to the ends of a massless cord and
allowed to move as shown. The pulley is both
massless and frictionless. Determine the
acceleration of the centre of mass.

m1
m2

aa
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We all have common-sense notions of heat and temperature.
Temperature is a measure of ‘hotness’ of a body. A kettle with boiling
water is hotter than a box containing ice. In physics, we need to define
the notion of heat, temperature, etc., more carefully. In this chapter,
you will learn what heat is and how it is measured. You will also learn
what happens when water boils or freezes, and its temperature does
not change during these processes even though a great deal of heat is
flowing into or out of it.

Temperature is a relative measure, or indication, of hotness or
coldness. A hot utensil is said to have a high temperature, and ice
cube to have a low temperature. An object that has a higher temperature
than another object is said to be hotter. Note that hot and cold are
relative terms, like tall and short. We can perceive temperature by touch.
However, this temperature sense is somewhat unreliable and its range
is too limited to be useful for scientific purposes.

We know from experience that a glass of ice-cold water left on a
table on a hot summer day eventually warms up whereas a cup of hot
tea on the same table cools down. It means that when the temperature
of body, ice-cold water or hot tea in this case, and its surrounding
medium are different, heat is exchanged between the system and the
surrounding medium, until the body and the surrounding medium are

P11CH4 
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at the same temperature. We also know that in the case of cold water,
heat flows from the environment to the glass tumbler whereas in the
case of hot tea, it flows from the cup of hot tea to the environment.
Heat is the form of energy transferred between two (or more) systems or
a system and its surroundings by virtue of temperature difference.

The SI unit of heat energy transferred is expressed in joule (J).
SI unit of temperature is kelvin (K). The commonly used unit of
temperature is °C.

The cgs or practical unit of heat is a calorie. One calorie is the amount
of heat required to raise the temperature of 1 gram of water from 14.5°C
to 15.5°C.

1 calorie = 4.186 joule ; 4.2 joule

Thermometer is an instrument which is used to measure the
temperature of a body.

Many physical properties of materials change sufficiently with
temperature to be used as the basis for constructing thermometers.
The commonly used property is variation of the volume of a liquid with
temperature. Mercury and alcohol are the liquids used in most liquid-
in-glass thermometers.

Thermometers are calibrated so that a numerical value may be
assigned to a given temperature. For the definition of any standard
scale, two fixed reference points are needed. The ice point and the
steam point of water are two convenient fixed points and are known as
the freezing and boiling points. These two points are the temperature
at which pure water freezes and boils under standard pressure.

The two familiar temperature scales are the Fahrenheit temperature
scale and the Celsius temperature scale. The ice and steam point have
values 32°F and 212°F respectively, on the Fahrenheit scale and that of
0°C and 100°C on the Celsius scale. On the Fahrenheit scale, there are
180 equal intervals between two reference points, and on the Celsius
scale, there are 100.
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A relationship for converting
between the two scales may be
obtained from a graph of
Fahrenheit temperature (tF)
versus Celsius temperature (tC) in
a straight line (Fig. 4.1), whose
equation is

           F 32
180

t 
 = C

100
t

Example 1. What is the temperature at which we get the same reading
on both the centigrade and Fahrenheit scales?
Solution. If t is the required temperature, then

32
100 180

t t 


On simplification, t = – 40
So, the required temperature is – 40°C or – 40°F.

Liquid-in-glass thermometers show different readings for
temperatures other than the fixed points because of differing expansion
properties. A thermometer that uses a gas, however, gives the same
readings regardless of which gas is used. The variables that describe
the behaviour of a given quantity (mass) of gas are pressure, volume,
and temperature (P, V and T) (where T = t + 273.15; t is the temperature
in °C). When temperature is held constant, the pressure and volume of
a quantity of gas are related as PV = constant. This relationship is
known as Boyle’s law, after Robert Boyle (1627–1691) the English
Chemist who discovered it. When the pressure is held constant, the
volume of a quantity of the gas is related to the temperature as V/T =
constant. This relationship is known as Charles’ law, after the French
scientist Jacques Charles (1747–1823). Low density gases obey these
laws, which may be combined into a single relationship.

100

212°

tF

tC
Temperature (°C)

Te
m

pe
ra

tu
re

 (°
F)

0
32°  tC = 100°

 tF = 180°

Fig. 4.1. A plot of Fahrenheit temperature
(tF) versus Celsius temperature (tC)
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Notice that since PV = constant and V/T = constant for a given
quantity of gas, then PV/T should also be a constant. This relationship
is known as ideal gas law. It can be written in a more general form that
applies not just to a given quantity of a single gas but to any quantity of
any dilute gas and is known as ideal-gas equation :

PV
T = µR

or PV = µRT ...(1)
where µ is the number of moles in the sample of gas and R is called
universal gas constant :

R = 8.31 J mol–1 K–1

In Eq. (1), we have learnt that
the pressure and volume are
directly proportional to
temperature : PV  T. This
relationship allows a gas to be
used to measure temperature in
a constant volume gas
thermometer. Holding the volume
of a gas constant, it gives P  T.
Thus, with a constant volume gas
thermometer, temperature is read in terms of pressure. A plot of
pressure versus temperature gives a straight line in this case, as shown
in Fig. 4.2.

However, measurements on real gases deviate from the values
predicted by the ideal gas law at low
temperature. But the relationship is
linear over a large temperature
range, and it looks as though the
pressure might reach zero with
decreasing temperature if the gas
continued to be a gas. The absolute
minimum temperature for an ideal
gas, therefore, inferred by
extrapolating the straight line to the
axis, as in Fig. 4.3. This temperature

Fig. 4.2 Pressure versus temperature of a
low density gas kept at constant volume

–200°C –100°C 100°C0°C

Pressure

–273.15 °C

Temperature

Pressure

0°C–273.15°C
(0 K)

Temperature

Gas C

Gas A

Gas B

Fig. 4.3. A plot of pressure versus
temperature and extrapolation of lines for
low density gases indicates the same
absolute zero temperature
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is found to be – 273.15°C and is
designated as absolute zero.
Absolute zero is the foundation of
the Kelvin temperature scale or
absolute scale temperature named
after the British scientist Lord
Kelvin (1824–1907). The unit of
temperature on this scale is
written as K. On this scale,
– 273.15°C is taken as the zero
point, that is 0 K (Fig. 4.4).

The size of the unit for Kelvin
temperature is the same Celsius degree, so temperature on these scales
are related by

T = tC + 273.15

(i ) Heat capacity. The quantity of heat required to warm a given
substance depends on its mass, m, the change in temperature, T and
the nature of substance. The change in temperature of a substance,
when a given quantity of heat is absorbed or rejected by it, is
characterised by a quantity called the heat capacity of that substance.
We define heat capacity, S of a substance as

S =
Q
T





where Q is the amount of heat supplied to the substance to change its
temperature from T to T + T.

(ii ) Specific heat capacity. If equal amount of heat is added to
equal masses of different substances, the resulting temperature changes
will not be the same. It implies that every substance has a unique value
for the amount of heat absorbed or rejected to change the temperature
of unit mass of it by one unit. This quantity is referred to as the specific
heat capacity of the substance.

If Q stands for the amount of heat absorbed or rejected by a
substance of mass m when it undergoes a temperature change T,
then the specific heat capacity, of that substance is given by

Absolute
Zero

Ice
point

Steam
point 373.15K

273.15K

–273.15°C

0.00°C

100.00°C 212.00°F

32.00°F

–459.69°F0.00K

Fig. 4.4. Comparision of the Kelvin, Celsius
and Fahrenheit temperature scales
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s =
S 1 Q

Tm m





...(1)

The specific heat capacity is the property of the substance which
determines the change in the temperature of the substance (undergoing
no phase change) when a given quantity of heat is absorbed (or rejected)
by it. It is defined as the amount of heat per unit mass absorbed or
rejected by the substance to change its temperature by one unit.  It
depends on the nature of the substance and its temperature.

The specific heat of a material is not constant. It depends on the
location of the temperature interval. Equation (1) gives only the average
value of specific heat capacity in the temperature range of T.

The SI unit of specific heat capacity is J kg–1 K–1.
From equation (1), Q = ms T
In differential notation,

dQ = ms d T
The heat required to increase the temperature of a body of mass m

from Ti to Tf is given by

Q =
T

T
Tf

i
m s dò

Equation (1) does not define specific heat capacity uniquely. We
must specify the conditions under which heat is supplied to the system.

(iii ) Molar specific heat capacity. It is often convenient to use the
mole to describe the amount of substance. By definition, one mole of
any substance is a quantity of matter such that its mass in gram is
numerically equal to the molecular mass M (often called molecular
weight). To calculate the number µ of moles, we divide the mass m in
gram by the molecular mass M.

So,  = M
m

or m = M

If the amount of substance is specified in terms of moles ,
instead of mass m in kg, we can define heat capacity per mole of the
substance by,

C = 
S 1 Q

T



  
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where C is known as molar specific heat capacity of the substance.
Like S, C also depends on the nature of the substance and its
temperature. The SI unit of molar specific heat capacity is J mol–1 K –1.

In 1819, two French physicists Dulong and Petit observed that the
average molar specific heat of all metals, except the very lightest, is
approximately constant and equal to nearly 3R = 6 cal mol–1 K–1 = 25 J
mol–1 °C–1.

Although the law is only an approximate one, it conveys a very
important idea. Nearly the same amount of heat is required per
molecule to raise the temperature of metals by a given amount. Thus,
the heat required to raise the temperature of a sample of metal depends
only on how many molecules the sample contains, and not on the
mass of an individual molecule. One mole of each metal contains same
number of atoms (= Avogadro’s number). So, the molar specific heat of
all metals at room temperature is nearly constant. This is a property of
matter which is directly related to its molecular structure.

According to Dulong and Petit’s law,
the molar specific heat of every solid must
come out to be equal to 6 cal. But the
result is very nearly 6 cal and not exactly
6 cal. Also when we perform the
experiment at various temperatures, we
note that the specific heat is not constant
quantity. Instead, it varies with
temperature as shown in Fig. 4.5. At T =
0 K, Cv tends to be zero. With rise in
temperature, Cv increases. At a specific temperature depending upon
the nature of the material, Cv becomes constant (= 3R).

Fig. 4.5. Variation of Cv with T
T0 K

Cv

3 R
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Specific heat of water is the amount of heat energy required to raise
the temperature of unit mass of water through 1°C or 1K.

Specific heat of water,

  c  = 1 cal g–1 °C–1 = 1 cal g–1 K–1

      = 4.2 J g–1 K–1  = 4200 J kg–1 K–1

The specific heat of every liquid
varies with temperature. However,
water shows a peculiar variation.
Considerable variations in the
specific heat of water were first
observed by Rowland.

The specific heat of water as a
function of temperature from 0° to
100°C has been plotted in Fig. 4.6.

The specific heat of a substance is the amount of heat required to
increase the temperature of a unit mass of it through a unit temperature
change. Its unit in cgs system is cal g–1°C–1. In mks system, it is measured
in kilocal kg–1°C–1. The SI unit is J kg–1 K–1.

The above definition is based on the assumption that the heat
supplied to the substance causes only a rise in the temperature of the
substance. This assumption is valid only if the substance is heated at
constant volume. But a substance generally expands when heated. In
that case, the heat supplied is utilised in two ways. A part of the heat
supplied is used in doing mechanical work in moving the molecules
apart against forces of attraction between them and also in expanding
against atmospheric pressure. The rest of the heat supplied increases
the temperature of the substance.

In the case of solids and liquids, the coefficient is very small. So,
the heat supplied is assumed to increase only the temperature. But
the coefficient of expansion is very large in the case of gases. Thus, if a

Fig. 4.6. Variation of specific heat
of water with temperature
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gas is heated, the heat energy will be required not only to increase the
temperature of the gas but also to do mechanical work in overcoming
external pressure during expansion. In the case of gases, only a
negligible amount of mechanical work is required to pull the molecules
apart because the intermolecular forces are extremely weak.

Consider mass m of a gas. Let Q units of heat raise the temperature
of the gas through T. Then the specific heat of the gas is given by

c =
Q
 Tm



[   Q =  T]m c  

Consider a gas enclosed in a cylinder fitted with an air-tight and
frictionless piston.

(i ) Let the gas be suddenly compressed. In this case, no heat is
supplied to the gas. But there is an increase in the temperature of
the gas.

c =
Q
 Tm



= 0 [   Q = 0]

(ii ) Let the gas be heated and allowed to expand. Suppose the ‘fall
in temperature due to expansion’ is equal to the ‘rise in temperature
due to heat supplied’.

 c =
Q

0m


 


[   T = 0]

(iii ) Let the gas be heated and allowed to expand. Suppose, in this
case, the ‘fall in temperature due to expansion’ is less than the ‘rise in
temperature due to heat supplied’. The net effect will be a rise in the

temperature of the gas. So, T is positive. Thus 
Q
 T

c
m
 

  
 

 is positive.

(iv ) Let the gas be heated and allowed to expand such that the ‘fall
in temperature due to expansion’ is more than the ‘rise in temperature
due to heat supplied’. The net effect will be a decrease in the temperature

of the gas. So, T is negative. Thus, Q
 T

c
m
 

  
 

 is negative.
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CONCLUSION
We can conclude from the above examples that a gas does not
possess a unique or a single specific heat. The specific heat of a
gas may have any positive or negative value ranging from zero to
infinity. The specific heat of a gas depends upon the manner in
which it is being heated. Thus, it is meaningless to talk about the
specific heat of a gas unless the conditions under which it is being
heated are mentioned.

We have seen that heat is energy
transfer from one system to another or
from one part of a system to another
part, arising due to temperature
difference. What are the different ways
by which this energy transfer takes
place? There are three distinct modes
of heat transfer: conduction, convection
and radiation (Fig. 4.7).

(i ) Conduction is the mechanism of transfer of heat between
two adjacent parts of a body because of their temperature
difference, without the actual movement of the particles from their
equilibrium positions.

Suppose one end of a metallic rod is put in a flame. The other end
of the rod will soon feel so hot that you cannot hold it by your bare
hands. Here heat transfer takes place by conduction from the hot end
of the rod through its different parts to the other end.

The ability to conduct heat differs widely from substance to
substance. Gases are poor thermal conductors. Liquids have
conductivities intermediate between solids and gases.

(ii ) Quantitative description of heat flow.  Consider a metal rod of
uniform cross-sectional area A with its two ends maintained at

Conduction

Convection

Radiation

Fig. 4.7. Heating by conduction,
convection and radiation
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temperatures T1 and T2 such that T1 > T2.
Let L be the length of the rod between the
hot reservoir (at temperature T1) and cold
reservoir (at temperature T2).

It has been experimentally observed
that in the steady state, the rate of flow of
heat (or heat current) is

(a) directly proportional to the cross-
sectional area A

H  A ...(1)
(b) directly proportional to the temperature difference (T1 – T2)

between the hot and cold faces
H  (T1 – T2) ...(2)

(c) inversely proportional to the distance L between the hot and
cold reservoirs.

H 
1
L ...(3)

Combining factors (1), (2) and (3), we get

H 
1 2A (T T )
L


or H = 1 2KA(T T )
L


Here, K is a constant of proportionality called coefficient of thermal
conductivity of the material of the block. Its value depends upon the
nature of material of the block.

Total amount of heat Q flowing from hot to cold reservoir is the
product of heat current H and time t.

 Q = Ht

or Q = 1 2KA(T T )
L

t
...(4)

(iii ) Coefficient of thermal conductivity.  If A = 1, L = 1, t = 1 and
(T1 – T2) = 1, then from equation (4), K = Q.

A

LT1 T2

Fig. 4.8. Steady state heat flow by
conduction in a bar with its two ends
maintained at temperatures T1 and T2
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This leads us to the following definition of coefficient of thermal
conductivity.

The coefficient of thermal conductivity of a material is defined as
the quantity of heat flowing per second through a rod (or slab or block)
of that material having unit length and unit cross-sectional area in the
steady state when the difference of temperature between two ends of
the rod (or slab or block) is 1°C or 1K and the flow of heat is perpendicular
to the end-faces of the rod (or slab or block).

The coefficient of thermal conductivity may also be defined in terms
of ‘unit cube’.

The coefficient of thermal conductivity of a material is the quantity
of heat flowing per second across the opposite faces of a unit cube,
made of that material, when the opposite faces are maintained at a
temperature difference of 1°C or 1K.

(iv ) Concept of temperature gradient. Temperature gradient is
defined as the rate of change of temperature with distance between two
isothermal surfaces.

In equation (4), 1 2T T
L


 gives the rate of change of temperature with

distance. It is called temperature gradient. Let it be denoted by ‘
T
L

d
d

 ’.

Here negative sign indicates the decrease of temperature with distance.
Rewriting equation (4) in terms of temperature gradient, we get

Q =
TKA
L

d t
d



If A = 1, – 
T
L

d
d  = 1 and t = 1, then K = Q.

The coefficient of thermal conductivity  of a material is the rate
of flow of heat energy through a rod, made of that material, of unit
cross-section area under a unit temperature gradient, the flow of heat
being normal to the cross-sectional area.

(v ) Units of K.  We know that

Q = 1 2KA(T T )
L

t
or K = 

1 2

QL
A (T T )t
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In cgs system, Q, L, A, (T1 – T2) and t are measured in cal, cm, cm2,
°C and s respectively. So, the cgs unit of K is cal cm–1°C–1 s–1.

In SI, Q, L, A, (T1 – T2) and t are measured in joule, m, m2, K and s
respectively.

So, the SI unit of K is J m–1 K–1 s–1 or W m–1 K–1.
(vi ) Dimensional formula of K.

   [K] = 
1 2

[Q] [L]
[A] [T T ] [ ]t

        = 
2 2

2
[ML T ] [L]
[L ] [K] [T]



 = [ML T–3 K–1]

(vii ) Values of K. The thermal
conductivities of various substances are
listed in Table 4.1. These values vary
slightly with temperature, but can be
considered to be constant over a normal
temperature range.

You may have noticed that some
cooking pots have copper coating on the
bottom. Being a good conductor of heat,
copper promotes the distribution of heat
over the bottom of a pot for uniform
cooking. Plastic foams, on the other
hand, are good insulators, mainly
because they contain pockets of air.
Recall that gases are poor conductors,
and note the low thermal conductivity
of air in the Table 4.1. Heat retention
and transfer are important in many other
applications. Houses made of concrete
roofs get very hot during summer days,
because thermal conductivity of concrete
(though much smaller than that of a
metal) is still not small enough.
Therefore, people usually prefer to give

TABLE 4.1. Thermal
Conductivities (K)

W m–1 K–1

Aluminium 205
Brass 109
Copper 385
Lead 34.7
Mercury 8.3
Silver 406
Steel 50.2

Body fat 0.20
Insulating
brick 0.15
Red brick 0.6
Concrete 0.8
Cork 0.04
Felt 0.04
Glass 0.8
Water 0.8
Ice 1.6
Glass wool 0.04
Styrofoam 0.01
Wood 0.12–0.04

Air 0.024
Argon 0.016
Helium 0.14
Hydrogen 0.14
Oxygen 0.023
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a layer of earth or foam insulation on the ceiling so that heat transfer is
prohibited and keeps the room cooler.

Generally, metals are good conductors of heat, silver being the best.
Non-metals like wood, glass are poor conductors with low value of K.

1. In winter, a brass knob appears colder than a wooden knob.
It is due to the reason that the thermal conductivity of brass (K = 109
W m –1 K–1) is more than that of wood (K = 0.12 Wm–1 K–1). When the
brass knob is touched, the heat energy is quickly conducted away from
the hand. On the other hand, when the wooden knob is touched, the
flow of heat energy from the hand is extremely slow. Thus, a brass
knob appears colder than a wooden knob although both may be at the
same temperature.

2. Woollen clothes keep us warm. This is because wool contains
air in its pores. Air (K = 0.024 Wm–1 K–1) is a bad conductor of heat.
In-fact, wool (K = 0.01 Wm–1 K–1) is also a bad conductor of heat. Both
the air and the wool do not permit heat to be conducted away from the
body. So, the woollen clothes keep us warm.

3. A new quilt is warmer than old quilt.  This is because new quilt
contains more air in its pores as compared to old quilt. Since air is a
bad conductor of heat therefore the heat is not conducted away from
the body.

4. Cooking utensils are provided with wooden handles.  This is
because wood is a bad conductor of heat. So, the wooden handle would
not permit heat to be conducted from hot utensil to hand. Thus, the
hot cooking utensil can be easily held in hand through the wooden
handle.

5. Cooking utensils are made of aluminium and brass. This is
because aluminium and brass are good conductors of heat. They rapidly
absorb heat from the fire and supply it to the food to be cooked.

6. Ice is covered in gunny bags to prevent melting of ice. This is
because of the fact that gunny bags are bad conductors of heat. The
pores of gunny bags contain air which is also a bad conductor of heat.
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7. The double-walled houses of ice made by Eskimos are warm
from inside. This is because the air within the walls does not allow
heat to be conducted away to the outside air.

8. Two thin blankets are warmer than a single thick blanket.
This is because the two thin blankets enclose a layer of air between
them. Since air is a bad conductor of heat therefore the conduction of
heat is prevented.

Example 2. Two rods, one semi-circular and the other straight, of the
same material and of same cross-sectional area are joined as shown in
Fig. 4.9. The ends A and B are maintained at a constant temperature
difference. Calculate the ratio of the heat conducted through a cross-
section of a semi-circular rod to the heat conducted through a cross-
section of the straight rod in a given time.

Solution. We know that   Q = 1 2KA(T T )
L

t

In the given problem, Q  1
L


1

2

Q
Q

=
2r
r  = 

2


Example 3. One end of a 0.25 m long metal bar is in steam and the
other in contact with ice. If 12 × 10–3 kg of ice melts per minute, what is
the thermal conductivity of the metal? Given: cross-section of the bar
= 5 × 10– 4 m2 and latent heat of ice is 80 kcal/kg.
Solution. L = 0.25 m, A = 5 × 10–4 m2,

(T1 – T2) = (100 – 0) K = 100 K
t = 1 minute = 60 s

If Q is the amount of heat required to melt 12 × 10–3 kg of ice, then
Q = 12 × 10–3 × 80 × 1000 cal

Q = 1 2A(T T )
K

L
t or   

1 2

QLK
A(T T )t




or K = 
3

4
12 10 80 1000 0.25

5 10 100 60





   

  
 cal s–1 m–1 K–1

= 80 cal s–1 m–1 K–1

Fig. 4.9
A B
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(i ) Isolated System. A system is said to be isolated if there is no
transfer of heat between the system and its surroundings. When different
parts of an isolated system are at different temperatures, a quantity of
heat transfers from the part at higher temperature to the part at lower
temperature. The heat lost by the part at higher temperature is equal
to the heat gained by the part at lower temperature.

(ii ) Principle of Calorimetry. Calorimetry means measurement of
heat. According to the principle of calorimetry, when a body at higher
temperature is brought in contact with another body at lower
temperature, the heat lost by the hot body is equal to the heat gained
by the colder body, provided no heat is allowed to escape to the
surroundings.

(iii ) Calorimeter. A device in which heat measurement can be made
by utilising the principle of calorimetry is called a calorimeter. It consists
of a metallic vessel and stirrer of the same material like copper or
aluminium. The vessel is kept inside a wooden jacket which contains
heat insulating materials (glass, wool, etc.). The outer jacket acts as a
heat shield and reduces the heat loss from the inner vessel. There is an
opening in the outer jacket through which a mercury thermometer can
be inserted into the calorimeter.

(iv ) Thermal Capacity or Heat Capacity. Thermal capacity of a
body is the amount of heat required to raise the temperature of the body
through 1°C or 1K.

The amount of heat required to raise the temperature of a body of
mass m through T is,

Q = ms T, where s is the specific heat of the body under
consideration.

If T = 1, then Q = thermal capacity.
 Thermal capacity, S = ms ...(1)
So, the thermal capacity of a body is the product of mass and specific

heat of the body. The SI unit of thermal capacity is J K–1.
(v ) Water Equivalent. Water equivalent of a body is defined as the

mass of water in gram which absorbs or emits the same amount of heat
as is done by the given body for the same rise or fall in temperature.
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It is denoted by w. Its SI unit is kg.
Now, Q = w T = ms T or w = ms ...(2)
It follows from equations (1) and (2) that the water equivalent and

thermal capacity of a body are numerically equal. If water equivalent is
measured in gram, the thermal capacity is measured in calorie/ºC.

(i) Change of state. A transition from one of the three states of matter
to another is called a change of state. Two common changes of states
are solid to liquid and liquid to gas (and vice versa). These changes can
occur when the exchange of heat takes place between the substance
and its surroundings.

(ii) Melting. The change of state from solid to liquid is called melting
and from liquid to solid is called fusion. It is observed that the
temperature remains constant until the entire amount of the solid
substance melts. Both the solid and liquid states of the substance coexist
in thermal equilibrium during the change of state from solid to liquid.
The temperature at which the solid and the liquid states of the
substance coexist in thermal equilibrium with each other is called
its melting point. It is characteristic of the substance. It also depends
on pressure. The melting point of a substance at standard atmospheric
pressure is called its normal melting point.

After the whole of ice gets converted into water and as we continue
further heating, we shall see that temperature begins to rise. The
temperature keeps on rising till it
reaches nearly 100°C when it again
becomes steady. The heat supplied is
now being utilised to change water from
liquid state to vapour or gaseous state.

(iii) Vaporisation. The change of
state from liquid to vapour (or gas) is
called vaporisation. It is observed that
the temperature remains constant until
the entire amount of the liquid is
converted into vapour. Both the liquid
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Fig. 4.10. A plot of temperature versus
time showing the changes in the state
of ice on heating (not to scale)
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and vapour states of the substance coexist in thermal equilibrium, during
the change of state from liquid to vapour. The temperature at which the
liquid and the vapour states of the substance coexist is called its boiling
point.

Boiling point decreases with decrease in pressure. This explains
why cooking is difficult on hills. At high altitudes, atmospheric pressure
is lower, reducing the boiling point of water as compared to that at sea-
level. On the other hand, boiling point is increased inside a pressure
cooker by increasing the pressure. Hence, cooking is faster. The boiling
point of a substance at standard atmospheric pressure is called its
normal boiling point.

(iv) Sublimation. All substances do not pass through the three
states : solid-liquid-gas. There are certain substances which normally
pass from the solid to the vapour state directly and vice versa. The
change from solid state to vapour state without passing through the liquid
state is called sublimation. The substance is said to sublime. Dry ice
(solid CO2) and iodine sublime. During the sublimation process, both
the solid and vapour states of a substance coexist in thermal equilibrium.

(v) Latent heat. The amount of heat per unit mass transferred during
a change of state of the substance is called latent heat of transformation
for the process.

The heat required during a change of state depends upon the heat
of transformation and the mass of the substance which completely
undergoes a state change. Thus, if mass m of a substance undergoes a
change from one state to the other completely, then the quantity of
heat required is given by

Q = mL or L = Q/m
where L is known as latent heat. It is a characteristic of the substance.
Its SI unit is J kg–1. The value of L depends on the pressure at which it
is measured. Its value at standard atmospheric pressure is usually
quoted. The latent heat for a solid-liquid state change is called the
latent heat of fusion (Lf), and that for a liquid-gas state change is
called the latent heat of vaporisation (Lv). These are often referred to
as simply the heat of fusion and the heat of vaporisation (vp).
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The variation of
temperature with heat
energy for a given
quantity of water is
shown in Fig. 4.11.

The following facts
are clear from the graph:

(i ) When heat is
added (or removed)
during a change of state, the temperature remains constant.

(ii ) The slopes of the phase lines are not all the same. This indicates
that specific heats of the various states are not equal.

(iii) For water, the latent heats of fusion and vaporisation are Lf = 3.33
× 105 J kg–1 and Lv = 22.6 × 105 J kg–1 respectively. So, 3.33 × 105 J
of heat is needed to melt 1 kg of ice at 0°C, and 22.6 × 105 J of heat is
needed to convert 1 kg of water to steam at 100°C. So, steam at 100°C
carries 540 cal/g more heat than water at 100°C. This is why burns
from steam are usually more serious than those from boiling water.

Example 4. When 0.15 kg of ice of 0°C mixed with 0.30 kg of water at
50°C in a container, the resulting temperature is 6.7°C. Calculate the
heat of fusion of ice. (swater = 4186 J kg–1°C–1).

Solution. Heat lost by water

= (0.30 kg) (4186 J kg–1°C–1) (50.0°C – 6.7°C)

= 54376.14 J

Heat to melt ice = (0.15 kg) Lf

Heat to raise temperature of ice water to final temperature

= (0.15 kg) (4186 J kg–1°C–1) (6.7°C – 0°C)

= 4206.93 J

Heat lost = heat gained

54376.14 = (0.15 kg) Lf + 4206.93 J

Lf = 3.34 × 105 J kg–1

Phase
Change

Phase
Change

Liquid phase
(water)

Solid phase
(ice)

Gas phase
(steam)

22.6 × 10 J/kg
(540 kcal/kg)

5

3.33 × 10 J/kg
(80 kcal/kg)
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Fig. 4.11. Temperature versus heat for water (Not to scale)
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Example 5. How much heat energy is liberated when 100 g of copper
in a vessel is cooled from 100°C to 50°C ? Given : specific heat capacity
copper, sCu = 385 J kg–1°C–1.
Solution. Given, mass of the copper,

m = 100 g = 0.1 kg
Initial temperature of copper, Ti = 100°C,
Final temperature of copper, Tf = 50°C,

and specific heat capacity of copper, sCu = 385 J kg–1°C–1.
Thus, the quantity of heat energy exchanged is given by

Q = m sCu T
= (0.1 kg) (385 J kg–1°C–1) × (50°C – 100°C)

i.e.,  Q = (0.1 kg) (385 J kg–1°C–1) (– 50°C)
or Q = – 1925 J

The negative sign shows that heat is liberated.

Convection is the process in which heat is transferred from one
point to another by the actual motion of matter from a region of high
temperature to a region of lower temperature.

Convection is possible only in fluids. Convection can be natural or
forced. Natural convection is responsible for many familiar phenomena.
In natural convection, gravity plays an important part. When a fluid is
heated from below, the hot part expands and, therefore, becomes less
dense. Because of buoyancy, it rises and the upper colder part replaces
it. This again gets heated, rises up and is replaced by the colder part of
the fluid. The process goes on. This mode of heat transfer is evidently
different from conduction. Convection involves bulk transport of different
parts of the fluid. In forced convection, material is forced to move by a
pump or by some other physical means. The common examples of forced
convection systems are forced-air heating systems in home, the human
circulatory system, and the cooling system of an automobile engine. In
the human body, the heart acts as the pump that circulates blood
through different parts of the body, transferring heat by forced
convection and maintaining it at a uniform temperature.
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If the material is forced to move by a blower or pump, the process is
called forced convection. If the material flows due to difference in
density (caused by thermal expansion), the process is called natural or
free convection.

It is an example of natural convection.
During the day, the ground heats up more quickly than large bodies

of water do. This occurs both because the water has a greater specific
heat and because mixing currents disperse the absorbed heat
throughout the great volume of water. The air in contact with the warm
ground is heated by conduction. It expands, becoming less dense than
the surrounding cooler air. As a result, the warm air rises (air currents)
and other air moves (winds) to fill the space-creating a sea breeze near
a large body of water. Cooler air descends, and a thermal convection
cycle is set up, which transfers heat away from the land. At night, the
ground loses its heat more quickly, and the water surface is warmer
than the land. As a result, the cycle is reversed and land breeze is
there (Fig. 4.12).

Day

Air current
(sea breeze)

Land warmer than water

           

Air current
(land breeze)

Night

Water warmer than land

Fig. 4.12. Convection cycles

The steady wind blowing from north-east to equator, near the surface
of Earth, is called trade wind. It is an example of natural convection.
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The equatorial and polar regions of the Earth receive unequal solar
heat. Air at the Earth’s surface near the equator is hot while the air in
the upper atmosphere of the poles is cool. In the absence of any other
factor, a convection current would be set up, with the air at the equatorial
surface rising and moving out towards the poles, descending and
streaming in towards the equator. The rotation of the Earth, however
modifies this convection current.

Heat transfer in the human body involves a combination of
mechanisms. These together maintain a remarkably uniform
temperature in the human body inspite of large changes in
environmental conditions.

The chief internal mechanism is forced convection. The heart serves
as the pump and the blood as the circulating fluid.

The transfer of heat from one place to another in a straight line, with
the speed of light, without heating the intervening medium is called
radiation.

Conduction and convection require some material as a transport
medium. These modes of heat transfer cannot operate between bodies
separated by a certain distance in vacuum. The third mechanism for
heat transfer needs no medium; it is called radiation. In radiation, the
heat flows by means of electromagnetic waves. The energy so radiated
in the form of electromagnetic waves is called radiant energy.

Electromagnetic waves do not require a material medium for
propagation. These waves travel with a speed of 3 × 108 m s–1 in vacuum.
This explains as to how heat transfer by radiation does not need any
medium and why it is so fast. Heat from the Sun reaches the Earth by
radiation. Similarly, we feel the warmth of nearby fire due to radiation.

The energy emitted by a body in the form of radiation by virtue of its
temperature is called thermal radiation. This energy is emitted by all
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bodies above absolute zero and is also called radiant energy. The most
powerful source of radiant energy is the Sun.

Thermal radiation belongs to the electromagnetic family i.e., it
resembles -rays, X-rays, ultraviolet light, visible light and radiowaves.
It can travel through vacuum and other transparent media. Its speed is
the same as that of light. Like other electromagnetic radiations, it
exhibits the phenomena of reflection, refraction, interference, diffraction
and polarisation.

The wavelength of thermal radiation is longer than that of visible
light. The wavelength of thermal radiation ranges from 8 × 10–7 m
to 3 × 10–4 m whereas the wavelength of visible light ranges from
4 × 10–7 m to 8 × 10–7 m.

Thermal radiation has got following properties:
(i) Thermal radiation can travel through vacuum.
(ii) Thermal radiation travels in straight lines.
(iii) Thermal radiation travels equally, in all directions, in a homoge-

neous medium.
(iv) Thermal radiation travels with the speed of light.
(v) Thermal radiation does not heat the medium through which it

passes.
(vi) Thermal radiation obeys inverse square law. The intensity of

radiation at a point is inversely proportional to the square of the
distance of the point from the source of radiation.

(vii) Thermal radiation obeys the laws of reflection.
(viii) Thermal radiation can be refracted.

A perfectly black body is one which absorbs completely the
radiations of all wavelengths falling on it. Since a perfectly black
body neither reflects  nor transmits any radiation therefore its
absorptance is unity. It is for the same reason that it appears black
irrespective of the wavelength of incident radiation.
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A perfectly black body cannot be realised
in practice. The nearest approach to a perfect
black body is a surface coated with lamp
black or platinum black. Such a surface
absorbs 96% to 98% of the incident radiation.

For accurate experimental work, the
black body designed by Fery is generally
used. Fery black body is a closed double-
walled hollow sphere having small opening
O and a conical projection P opposite to the
opening. The projection will protect direct reflection of any radiation in
the opening from the surface opposite it. It is painted black from inside.
Radiation entering the opening O suffers multiple reflections at the
inner walls. After a few reflections, almost the entire radiation gets
absorbed. As an example, let 80% of energy be reflected at each
reflection, the remaining 20% being absorbed. Then, at two reflections,
64% will be reflected and 36% will be absorbed. Thus, nearly 99% of
the energy will be absorbed in 10 reflections.

When the body is heated, it becomes a source of thermal radiation.
The radiation from a constant temperature enclosure depends only on
the temperature of the enclosure. It does not depend on the nature of
the substance of which the enclosure is made.

Statement. The total amount of heat energy radiated per second
per unit area of a perfect black body is directly proportional to the
fourth power of the absolute temperature of the surface of the body.

This law is also known as Stefan’s fourth power law.
If E be the energy radiated by a unit area of the surface of black

body per second at absolute temperature T, then
E  T4 or E = T4

where  is a constant known as Stefan’s constant. Its value in SI
units is

                     5.67 × 10–8 J m–2 s–1 K–4        or       W m–2 K–4

Stefan derived this law experimentally in 1879. In 1884, Boltzmann
gave a theoretical proof of this law based on thermodynamical
considerations. So, this law is also known as Stefan-Boltzmann law.

P
O

Fig. 4.13. Black body
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It may be pointed out that the above law is not a law of cooling. It
does not refer to the net loss of heat by a body. It merely deals with the
amount of heat energy radiated by the body by virtue of its temperature,
irrespective of what it gains from the surroundings. Moreover, Stefan’s
law applies to the whole range of wavelengths, without being limited to
any particular wavelength.

Stefan’s law can be extended to represent the net loss of heat by a
body.

Consider a black body at absolute temperature T sorrounded by
another black body at absolute temperature T0. A unit area of the ‘inner’
black body loses heat energy T4 per second. But it also gains heat
energy T0

4 per second.
 Net loss of heat energy per unit area per unit time,

E = T4 – T0
4 =  (T4 – T0

4)
If the body is not a perfect black body, then E = e (T4 – T0

4)
where e is called the radiation emissivity or emissivity of the surface.

The value of e depends upon the nature of the surface.

E =  (T4 – T0
4)

=  (T2 – T0
2) (T2 + T0

2)
=  (T – T0) (T + T0) (T

2 + T0
2)

If T is nearly equal to T0, then
E =  (T – T0) (2T0) (2T0

2)
=  (T – T0) (4T0

3) = 4T0
3 (T – T0)

If A be the total surface area, then loss of heat energy per unit time
or rate of loss of heat

= 4 A T0
3 (T – T0).

 rate of loss of heat  (T – T0)
So, the rate of loss of heat is proportional to the difference of

temperature between the body and surroundings. This is Newton’s
law of cooling.
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We can see the Sun and the stars clearly through the atmosphere
because the atmosphere is transparent to visible radiation. However,
most of the infrared radiation is absorbed by the atmosphere. So, most
of the infrared radiation cannot pass through the atmosphere. Now,
the energy from sunlight obviously heats the Earth, which like any
other hot body, starts emitting radiation. However, the Earth is much
cooler than the Sun so that, according to Planck’s law, its radiation is
mostly in the infrared region. This is unlike the solar radiation. The
radiation from the Earth is unable to cross the lower atmosphere which
reflects it right back. Thus, the Earth’s atmosphere is richer in infrared
radiaton which is sometimes called “heat radiation”. This is because
most materials absorb these radiations quickly ‘heating’ themselves up
in the process. The clouds that are low also prevent infrared radiation
from passing through. This helps to keep the Earth’s surface warm at
night. This phenomenon is popularly known as “Greenhouse effect”.

Fig. 4.14 shows a
Greenhouse effect. The
surface of the Earth absorbs
solar radiation which
passes through the
atmosphere. In turn, the
Earth radiates inf rared
waves. These waves are
reflected back by clouds
and gases in the lower
atmosphere.

The components of solar
and other extra-terrestrial
sources in the ultraviolet
and lower wavelength
domains are dangerous.
This is because they cause genetic damages to living cells. It is the
ozone layer which blocks the passage of UV radiation and protects us
from the harmful portions of solar radiation. Nearly all radiation of
wavelength less than 3 × 10–7 m is absorbed by the ozone layer.

Cloud

CO  and other
gases in lower

atmosphere

2

Solar radiation

Infrared
rays are
reflected

Infrared rays
are radiated

by Earth

Earth surface

Fig. 4.14. Greenhouse effect
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The Earth may be regarded as a huge Greenhouse where the glass
of the artificial Greenhouse is replaced by atmosphere. The carbon
dioxide and the water vapours present in the Earth’s atmosphere
are good absorbers of infrared radiation.

Do the review exercises in your notebook.

1. A metal cube of length 10.0 mm at 0°C (273 K) is heated to 200°C
(473 K). Given : its coefficient of linear expansion is 2 × 10–5 K–1.
The per cent change of its volume is
(a) 0.1 (b) 0.2
(c) 0.4 (d) 1.2.

2. Which of following quantities must be determined so that the
thermal capacity of a body may be calculated, when the specific
heat of body is known?
(a) Emissivity (b) Latent heat
(c) Mass (d) Temperature.

3. The density of water at 20°C is 998 kg m–3 and at 40°C, it is
992 kg m–3. The coefficient of cubical expansion of water is
nearest to
(a) 2 × 10–4/°C (b) 4 × 10–4/°C
(c) 6 × 10–4/°C (d) 3 × 10–4/°C.

4. The density of water at 4°C is 1000.0 kg/m3 and at 100°C it is
958.4 kg/m3. The cubic expansivity of water between these
temperatures is
(a) 4.5 × 10–3 K–1 (b) 5.4 × 10–5 K–1

(c) 4.5 × 10–4 K–1 (d) 5.4 × 10–6 K–1.
5. If Cp and Cv denote the specific heats of nitrogen per unit mass at

constant pressure and constant volume respectively, then
(a) Cp – Cv = 28R (b) Cp – Cv = R/14
(c) Cp – Cv = R/28 (d) Cp – Cv = R.
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6. An ideal gas is expanding such that PT 2 = constant. The coefficient
of volume expansion of the gas is

(a)
1
T

(b)
2
T

(c)
3
T

(d)
4
T

.

7. Two uniform brass rods A and B of lengths l and 2l and radii 2r
and r respectively are heated to the same temperature. The ratio
of the increase in the volume of A to that of B is
(a) 1 : 1 (b) 1 : 2
(c) 2 : 1 (d) 1 : 4.

8. 0.1 m3 of water at 80°C is mixed with 0.3 m3 of water at 60°C. The
final temperature of the mixture is
(a) 65°C (b) 70°C
(c) 60°C (d) 75°C.

9. The resistance of the wire in the platinum resistance thermometer
at ice point is 5  and at steam point is 5.25 . When the
thermometer is inserted in an unknown hot bath, its resistance
is found to be 5.5 . The  temperature of the hot bath is
(a) 100°C (b) 200°C
(c) 300°C (d) 350°C.

10. 10 mole of an ideal monatomic gas at 10°C is mixed with 20 mole
of another monatomic gas at 20°C. Then the temperature of the
mixture is
(a) 15.5°C (b) 15°C
(c) 16°C (d) 16.6°C.

1. A piece of ice (heat capacity = 2100 J kg–1 °C–1 and latent heat =
3.36 × 105 J kg–1) of mass m gram is at – 5°C at atmospheric
pressure. It is given 420 J of heat so that the ice starts melting.
Finally when the ice-water mixture is in equilibrium, it is found
that 1 g of ice has melted. Assuming there is no other heat
exchange in the process, the value of m is __________ .

2. Certain amount of heat is given to 100 g of copper to increase its
temperature by 21°C. If the same amount of heat is given to 50 g
of water, then the rise in its temperature is __________ .

3. A thin copper rod rotates about an axis passing through its end
and perpendicular to its length with an angular speed 0 . The
temperature of the copper rod is increased by 100°C. If the
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coefficient of linear expansion of copper is 2 × 10–5/°C, the
percentage change in the angular speed of the rod is __________ .

4. A metal rod of Young’s modulus Y and coefficient of thermal
expansion  is held at its two ends such that its length remains
invariant. If its temperature is raised by t°C, the linear stress
developed in it is __________  .

5. An aluminium sphere of 20 cm diameter is heated from 0°C to
100°C. Its volume changes by __________ . (Given that coefficient
of linear expansion for aluminium Al = 23 × 10–6/°C)

6. A lead bullet strikes against a steel plate with a velocity 200 m s–1.
If the impact is perfectly inelastic and the heat produced is equally
shared between the bullet and the target, then the rise in
temperature of the bullet is __________ .

7. Two temperature scales A and B are related by 
A – 42
110

 = 
B – 72
220

.

At __________ temperature two scales have the same reading?
8. When the temperature of a rod increases from t to t + t, its moment

of inertia increases from I to I + I. If  be the  coefficient of linear

expansion of the rod, then the value of 
I
I


 is __________ .

9. If an anisotropic solid has coefficients of linear expansion x , y
and z for three mutually perpendicular directions in the solid, its
coefficient of volume expansion will be __________ .

10. If the pressure and the volume of certain quantity of ideal gas are
halved, then its temperature __________ .

1. Is the bulb of a thermometer made of diathermic or adiabatic wall?
2. Why does a metal bar appear hotter than a wooden bar

at the same temperature? Equivalently it also appears cooler than
wooden bar if they are both colder than room temperature.

3. Calculate the temperature which has same numeral value on
Celsius and Fahrenheit scale.

4. These days people use steel utensils with copper bottom. This is
supposed to be good for uniform heating of food. Explain this effect
using the fact that copper is the better conductor.

5. Calculate the stress developed inside a tooth cavity filled with
copper when hot tea at temperature of 57°C is drunk. You can
take body (tooth) temperature to be 37°C and  = 1.7 × 10–5/°C,
bulk modulus for copper = 140 × 109 N m–2.
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1. Find out the increase in moment of inertia I of a uniform rod
(coefficient of linear expansion ) about its perpendicular bisector
when its temperature is slightly increased by T.

2. During summers in India, one of the common practice to keep cool
is to make ice balls of crushed ice, dip it in flavoured sugar syrup
and sip it. For this a stick is inserted into crushed ice and is
squeezed in the palm to make it into the ball. Equivalently in
winter in those areas where it snows, people make snow balls and
throw around. Explain the formation of ball out of crushed ice or
snow in the light of P-T diagram of water.

3. 100 g of water is supercooled to – 10°C. At this point, due to some
disturbance mechanised or otherwise some of it suddenly freezes
to ice. What will be the temperature of the resultant mixture and
how much mass would freeze?
[Sw = 1 cal/g/°C and Lw

Fusion = 80 cal/g]
4. One day in the morning, Ramesh filled up 1/3 bucket of hot water

from geyser, to take bath. Remaining 2/3 was to be filled by cold
water (at room temperature) to bring mixture to a comfortable
temperature. Suddenly Ramesh had to attend to something which
would take some time, say 5 – 10 minutes before he could take
bath. Now he had two options: (i ) fill the remaining bucket completely
by cold water and then attend to the work, (ii) first attend to the
work and fill the remaining bucket just before taking bath. Which
option do you think would have kept water warmer? Explain.

5. A thin rod having length L0 at 0°C and coefficient of linear expansion
a has its two ends maintained at temperatures 1 and 2 ,
respectively. Find its new length.

1. A geyser heats water flowing at the rate of 3.0 litre per minute from
27°C to 77°C. If the geyser operates on a gas burner, what is the rate
of consumption of the fuel, if its heat of combustion is 4.0 × 104 J g–1 ?

2. Calculate the difference between two specific heats of 1 g of helium
gas at NTP. Molecular weight of helium = 4 and J = 4.186 × 107 erg
cal–1.

3. How much heat energy is absorbed when 50 g ice cube melts at
0°C ? (Latent heat of fusion of ice, Lf = 3.35 × 105 J kg–1)

4. A small hole is made in a hollow sphere whose walls are at 723°C.
Find the total energy radiated per second per cm2.

5. Calculate the temperature in kelvin at which a perfect black body
radiates at the rate of 5.67 W cm–2. Stefan’s constant is 5.67 ×
10–5 erg s–1 cm–2 K–1.



131

TOPIC

5 Waves

131

Energy can be transferred from one place to another through the
bulk motion of matter. A running stream of water carries energy with
itself as it moves along. There is another way of transferring energy in
which there is no bulk motion of matter. This is by means of ‘waves’.
The waves are of three types—mechanical waves, electromagnetic waves
and matter waves.

(i ) Mechanical waves can be produced and propagated only in
those material media which possess elasticity and inertia. These waves
are also called elastic waves. Common examples include water waves,
sound waves, and seismic waves. They can exist only within a material
medium such as water, air and rock.

(ii ) Electromagnetic waves do not require any material medium
for their production or propagation. Common examples include visible
and ultraviolet light, radio and television waves, microwaves, X-rays
and radio waves. All electromagnetic waves travel through vacuum at
the same speed c given by

c = 299792458 m s–1  3 × 108 m s–1

(iii ) Matter waves are waves associated with electrons, protons and
other fundamental particles, and even atoms and molecules.

In this unit, we shall study only mechanical wave motion which will
be referred to simply as wave motion.

We can see and appreciate waves on a sea-shore. Waves can be
generated in a large basin or a tub of water by just dropping a small
stone or a pebble at the centre.

P11CH5 
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The dropped pebble creates a disturbance in the centre. The particles
of water acquire energy (both kinetic and potential). This energy is
transmitted to the next portion of the surface
layer and so on. Thus we see something
travelling outwards away from the source of
disturbance in ever-expanding concentric
circles (Fig. 5.1). In some regions, water level
is below the usual normal level. These are
called troughs. On either side of a trough,
there are regions where water is at a level
higher than the normal. These are called crests.

To sum up, the disturbance moves
progressively onwards in the form of alternate
troughs and crests as shown in Fig. 5.2. This
disturbance is called ‘wave’.

It is the disturbance which travels outwards
and not water. This fact can be verified by placing
a piece of cork or a straw on the disturbed surface
of water. It will be observed that the cork or straw
just keeps on oscillating up and down about its mean position,
sometimes riding a crest and at another time resting on a trough. The
straw or cork will not move outwards with the disturbance.

Thus, the particles of the medium certainly oscillate about their
mean positions but their permanent physical movement away from
their original positions is not there.

Wave motion may be defined as a form of disturbance which is
due to the repeated periodic vibrations of the particles of the medium
about their mean positions and the motion is handed over from one
particle to the other without any net transport of the medium.

It may also be defined as under:
Wave motion is a means of transferring momentum and energy

from one point to another without any transport of matter between the
two points.

Consider a stretched string tied at one end to a fixed support. Let
the free end of the stretched string be given an upward jerk. This will

Fig. 5.1. Water waves

NORMAL
  LEVEL

Fig. 5.2. Crests and troughs
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produce an upward kink in the string. This
upward kink travels, along the string, towards the
fixed end as shown in Fig. 5.3.

It may be noted that it is only the disturbance
given to the free end that travels along the string
and not any part of the string itself.

If the free end of the string is given one complete oscillation, then
an upward kink will be followed by a downward kink along the string.
However, if we continuously move the
free end of the string up and down, a
wave-train is observed to move, along
the string, having alternate crests and
troughs (Fig. 5.4).

(i) Wave motion is merely a form of disturbance which is produced
in the medium by the repeated periodic motion of the particles of the
medium about their mean positions.

(ii ) The energy moves outwards away from the source while the
particles of the medium continue vibrating about their mean positions
with fixed frequency. Thus, a wave represents the transfer of energy
from particle to particle. Energy can be transmitted over long distances
by wave motion.

(iii ) In order to set up wave motion in a medium, it is necessary
that the medium should possess elasticity and inertia. Due to elasticity,
the medium has a tendency to come back to its original condition. Due
to inertia, the medium can store energy. The speed of a wave in a
medium is determined by the inertia and elasticity of the medium. So,
material media (having elasticity and inertia) are capable of transmitting
mechanical waves. On the other hand, no material medium is necessary
for the propagation of electromagnetic waves.

(iv ) During their to and fro vibration about their mean positions,
the particles possess different velocities. At the extreme position, the
particle velocity is zero. The velocity increases as the particle moves
towards the mean position. At the mean position, the particle velocity
is maximum. The ‘maximum velocity’ is determined by the energy of

Fig. 5.3. Waves in strings

Fig. 5.4. Wave-train in string



Physics—XI134

the wave. On the other hand, a wave propagates with constant velocity
in a homogeneous and isotropic medium.

To sum up, the wave velocity is very much different from the particle
velocity.

(v ) Depending upon the type of wave, the particles of the medium
may actually oscillate up and down or the particles may move towards
or against the direction of propagation of wave.

(vi ) In a wave motion, all the particles of the medium do not start
moving at once. But there is a constant phase difference between one
particle and the next. The wave advances in that direction in which it
meets particles with continuously decreasing phase. In simple words, the
movement of each particle begins a little later than that of its predecessor.

Mechanical waves can be divided into two types :
(i ) Transverse waves (ii ) Longitudinal waves.

Transverse wave motion is that wave motion in which the individual
particles of the medium execute simple harmonic motion about their mean
positions in a direction perpendicular to the direction of propagation of
the wave. The wave itself is known as transverse wave.

The water waves, the movement of a kink in a rubber string, the
movement of string in a ‘sitar’ or a violin, the movement of the membrane
of a ‘tabla’ or ‘dholak’ are all examples of transverse vibrations of these
media and transverse waves generated in those media.

A transverse wave progresses as a series of troughs and crests. Crest
is the position of maximum displacement in the positive direction i.e.,
above the line of mean position or
normal level. As an example, in
Fig. 5.5, A, C and E are crests. When
the displacement of a particle is
maximum above the line of mean
position, the particle is said to be at
the crest of a wave.

B D F

A C E
NORMAL
  LEVEL





Fig. 5.5. Transverse wave
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Trough is the position of maximum displacement in the negative
direction, i.e., below the line of mean position or normal level. In
Fig. 5.5, B, D and F are troughs. When the displacement of a particle is
maximum below the line of mean position, the particle is said to be at
the trough of a wave.

The distance between two consecutive crests or troughs is known
as the wavelength.

Transverse waves can be transmitted through solids. They can also
be set up on the surfaces of liquids. These waves cannot be transmitted
inside liquids and gases. This is due to the fact that liquids and gases
do not possess internal transverse restoring forces.

Longitudinal wave motion is that wave motion in which the
individual particles of the medium execute simple harmonic motion about
their mean positions along the direction of propagation of the wave.

Sound wave is an example of longitudinal wave.
When a longitudinal wave travels through a medium, it produces

compressions and rarefactions of the medium.
In a compression, the distance between any two consecutive particles

of the medium is less than the normal distance.
So, the density of the medium in compression is more than the

normal density.
In a rarefaction, the distance between any two consecutive particles

of the medium is more than the normal distance. So, the density of the
medium in a rarefaction is less than the normal density.

In Fig. 5.6 (i ), the positions of
different layers of air are shown
when the tuning fork is not
vibrating. However, when the
tuning fork is set into vibration, the
vibrating tuning fork sends out
alternate waves of compression (or
condensation) and rarefaction as
depicted in Fig. 5.6 (ii). When these
waves strike the ear drum of the
listener, they make the ear drum

RAREFACTION

CONDENSATION

Fig. 5.6. Positions of different layers of air
when (i ) tuning fork is not vibrating

(ii ) tuning fork is vibrating
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vibrate with the frequency of the incident waves. The distance between
the centres of two nearest condensations or rarefactions is known as
wavelength .

Again, consider the case of a
spiral spring. When it is
compressed at one end and
released, the coils of the spring
vibrate about their original
positions along the length of the
spring (Fig. 5.7). It will be observed
that coils get closer together and
move farther apart alternately. (AB
+ BC), i.e., a compression and an adjoining rarefaction constitute one
wave. Similarly, (BC + CD) or (CD + DE) or (DE + EF) constitute one wave.

The succession of waves constitutes a wave train ABCDEF.
The longitudinal wave can be transmitted through solids, liquids or

gases. In-fact, longitudinal wave is the only type of wave which can be
propagated by a gas.

    Longitudinal Waves           Transverse Waves

1. The particles of the medium 1. The particles of the medium vibrate
vibrate along the direction of at right angles to the direction of
propagation of the wave. propagation of the wave.

2. The longitudinal waves travel 2. The transverse waves travel in the
in the form of alternate com- form of alternate crests and
pressions (condensations) and troughs. One crest and one trough
rarefactions. One compression constitute one wave.
and one rarefaction constitute
one wave.

3. These waves can be formed in 3. These waves can be formed in
anymedium (solid, liquid or solids and on the surfaces of
gas). liquids only.

4. When longitudinal waves 4. When transverse waves propagate,
propagate, there are pressure there are no pressure changes in
changes in the medium. the medium.

A B C D E F

C R C R C



C=COMPRESSION R=RAREFACTION

Fig. 5.7. Formation of compressions and
rarefactions in spring
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(i ) Crest. The elevation or hump caused in a medium due to the
propagation of transverse wave through it is called crest.

(ii ) Trough. The depression or hollow caused in a medium due to
the propagation of transverse wave through it is called trough.

(iii ) Compression. A portion of the medium where an increase in
density occurs (because of reduction in volume) due to passage of
longitudinal wave in it is called compression or condensation.

(iv ) Rarefaction. A portion of the medium where a decrease in
density occurs (because of increase in volume) due to passage of
longitudinal wave in it is called rarefaction.

(v ) Wavelength (). Following are the different ways of defining
wavelength:

Wavelength of a wave is the distance travelled by the wave in a
medium during the time a particle of the medium completes one vibration.

Wavelength is the distance between any two nearest particles of the
medium vibrating in the same phase.

Wavelength is the distance between two consecutive crests or troughs.
Wavelength is the distance between two consecutive compressions or

rarefactions.
(vi ) Frequency (). Frequency of a wave is the number of complete

wavelengths travelled by the wave in one second.
(vii ) Time Period (T). Time period of a wave is the time taken by the

wave to travel a distance equal to one wavelength.

Frequency of wave,  = Frequency of vibration of the particles of the
medium

Time period of wave, T = Time period of vibration of the particles of
the medium

Time taken to complete  vibrations is 1 second.

Time taken to complete 1 vibration is 
1


 second. But this time is

equal to time period T.
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
1T =


or
1
T

  or  T =1

Distance travelled by wave in time T = 

Distance travelled by wave in unit time = T


or T
v 
 or v  

So, velocity of wave is the product of frequency and wavelength of
the wave. This relation holds for longitudinal as well as transverse waves.

Hearing, like sight, touch, taste etc. is a primary sensation. The
term ‘sound’ is used in two ways. One is the sensation of hearing and
another is the physical cause which produces that sensation. When we
say that we hear the sound of chirping birds, we refer to this sensation.
But when we say that sound travels in air at a speed of 340 m s–1, we
refer to the waves of sound which are external to our system of hearing.
This is the physical sense in which we use the term ‘sound’. The other
one is the physiological sense in which we use the term ‘sound’.

Sound may be defined as the physical cause which enables us to
have the sensation of hearing.

Both sound and light are associated with wave motion. Light waves
are electromagnetic waves propagating in free space at a tremendous
speed of three lakh kilometre per second. On the other hand, sound is
a mechanical wave motion, in an elastic medium, moving with a small
speed of about 340 m s–1 nearly. Further, whereas light does not require
any medium to pass through, sound cannot travel in vacuum.

Sound is produced by the vibrations of sounding body. Our ear is
not sensitive to all such vibrations. Our range of hearing, i.e., audible
range is from 20 Hz to 20,000 Hz. Any vibration with a frequency greater
than 20,000 Hz is called an ultrasonic vibration. A bat produces ultrasonic
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vibrations which are beyond the range of
human hearing. The word ‘ultrasonic’
should not be confused with supersonic.
Any object moving with a speed greater than
the speed of sound is said to move with a
supersonic speed.

Sound requires a material medium for
propagation. If there is no material medium
between two points as in vacuum, sound
cannot travel from one point to another.

Example 1. The audible frequency range
of a human ear is 20 Hz – 20 kHz. Convert
this into the corresponding wavelength range. Take the speed of sound
in air at ordinary temperature to be 340 m s–1.

Solution. Lower limit of wavelength, min.
max .

v
 



or
1

3
min. 3

340 m s 17 10 m
20 10  Hz


   


= 17 mm

Upper limit of wavelength, 
1

max. 1
min.

340 m s m
20 s

v 


  


 = 17 m

Example 2. An observer standing at a sea-coast observes 54 waves
reaching the coast per minute. If the wavelength of the waves is 10 m,
find the velocity of the waves.

Solution. 154 s ;  =10 m
60

  

154 10 m s
60

v       9 m s–1

(i ) The speed of transverse wave in a solid is given by:

v = 



,

where  is the modulus of rigidity of the material and  is its density.

O

K

B

     TO
EXHAUST
   PUMP

Fig. 5.8. Sound does not travel
in vacuum
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(ii) The speed of transverse waves in a stretched string is given by:

Tv 


where T is the tension in the string and  is the linear mass density,
i.e., mass per unit length of the string. In SI units, T is measured in
newton and ‘’ in kg m–1.

Let diameter of a wire = D ; Density of material of wire = .
Then,   = mass per unit length of wire

= volume of unit length × density
= cross-sectional area × unit length × density

=
2D 1

2
 

   
 

 v = 2
T 2 T

DD
4


 

   
 

(iii ) Speed of longitudinal waves in solids, liquids and gases
Newton, on the basis of theoretical considerations, deduced the

following formula for the velocity of longitudinal waves in an elastic medium.
Ev 


where E is the elasticity of the medium and  is the density of the
undisturbed medium. In the case of solids, E represents the Young’s
modulus of elasticity. In the case of liquids and gases, E represents the
bulk modulus of elasticity.

(iv ) When sound waves propagate through a long thin rod, the
length of the rod decreases in the region of compression and increases
in the region of rarefaction. The only type of strain involved in this is
‘longitudinal strain’. Therefore, the only modulus of elasticity to be
considered in this case is ‘Young’s modulus of elasticity’. The velocity of
sound in a long thin rod is given by,

Yv 


Here,  is the density of the material of the rod.
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(v ) The velocity of sound in a liquid is given by

Bv 


 where B is the bulk modulus of elasticity and  is the density

of the liquid.

Example 3. Find the speed of transverse waves in a copper wire having
a cross-sectional area of 1 mm2 under the tension produced by 1 kg wt.
The relative density of copper = 8.93.
Solution. a = 1 mm2 = 10–6 m2,

 = 8.93 × 103 kg m–3

T = 1 kg wt = 9.8 N,
mass/length,  = 10–6 × 1 × 8.93 × 103 kg m–1

= 8.93 × 10–3 kg m–1

v =
T


 = 3
9.8

8.93 10
 m s–1 = 33.13 m s–1

Example 4. Deduce the velocity of longitudinal waves in a metal rod.
Given : modulus of elasticity = 7.5 × 1010 N m–2 and density = 2.7 ×
103 kg m–3.

Solution. v = 
Y


 = 
10

3
7.5 10
2.7 10




 m s–1

= 5.27 × 103 m s–1

Example 5. Determine the speed of sound in a liquid of density
8000 kg m–3. Given : bulk modulus = 2 × 109 N m–2.

Solution. v =
B


 = 

92 10
8000


 m s–1 = 500 m s–1

Newton assumed that sound waves travel in air under isothermal
conditions, i.e., temperature remains constant. So, the changes in
pressure and volume obey Boyle’s law.
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 PV = constant
Differentiating, PdV + VdP = 0 or Pd V = –VdP

or  P = P stress
V/V strain
d

d
  = (isothermal) elasticity B i

Now, v =
B Pi 
 

which is Newton’s formula for the velocity of sound waves in air or in
a gas.

Let us apply this formula to calculate the velocity of sound in air at
NTP.

At NTP, density  of air = 1.293 kg m–3

and                pressure, P = 0.76 m of Hg column
= 0.76 × 13600 × 9.8 Nm–2

( P = hdg and  dHg = 13600 kg m–3)

 v = 1 10.76 13600 9.8m s 280 m s
1.293

  


This value is nearly 16% less than the experimental value of
332 m s–1. This discrepancy could not be satisfactorily explained by
Newton.

Laplace, a French mathematician, suggested that sound waves travel
in air under adiabatic conditions and not under isothermal conditions as
suggested by Newton. He gave the following two reasons for this.

(i ) When sound waves travel in air, the changes in volume and
pressure take place rapidly. (ii) Air or gas is a bad conductor of heat.

Due to both these factors, the compressed air becomes warm and
stays warm whereas the rarefied air suddenly cools and stays cool. For
adiabatic changes in pressure and volume,

PV = constant
On differentiation,  1P V V + V P = 0d d 

or 1
V P V PP =

VV V
d d

dd




     = 

P BV
V

a
d
d  ,
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where Ba is adiabatic elasticity.

Now, v = 
Ba


 = 

P


which is Laplace’s corrected formula for velocity of sound waves in air
or gas.

Again,  1 1P 1.41 280 m s 332.5 m sv       


This result agrees very well with the experimental value of 332 m s –1.
This establishes the correctness of Laplace’s formula.

(i ) Effect of change in pressure
At constant temperature, PV = constant (Boyle’s law)

or
P constantm




where m is the mass of the gas and  is its density.

or
P constant


[ m is constant.]

or
P constant



[  is also constant.]

   P =v
 
   

 is also constant.

So, if the temperature remains constant, the change in pressure has
no effect on the velocity of sound in a gas.

Clearly, the velocity of sound in a gas is independent of pressure,
provided temperature remains constant.

(ii ) Effect of change in temperature
Let v0 and vt be the velocity of sound in a gas 0°C and t°C respectively.

Let  and P remain the same at both temperatures.

Thus,         0
0

P Pand t
t

v v 
 

 
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Dividing,   00

0

P
P

t

t t

v
v

 
  

  
...(1)

Let V0 and 0 be the volume and density respectively of a given
mass m of gas at 0°C. Let Vt and t be the volume and density respectively
for the same mass m of gas at t°C.

Then,     0 0V Vt t m   or   0

0

V
V

t

t





But  
0 0

V T
V T

t  (Charle’s law)

where T0 and T are the absolute temperatures corresponding to 0°C
and t°C respectively.

 0

0

T
T t






0 0

T
T

tv
v

 ...(2)  [from equation (1)]

So, the velocity of sound varies directly as the square root of the
absolute temperature of the gas. This explains as to why sound travels
faster on a hot summer day than on a cold winter day.

Temperature coefficient of velocity of sound

From equation (2), 
0

273 273
273 0 273

tv t t
v

 
 



or                           
1/2

0
1 1

273 273
tv t t

v
 

    
 

Assume t to be small. Expanding the right hand side of the above
equation by Binomial theorem and neglecting squares and higher

powers of ,
273

t
 we get

0

11 1
2 273 546

tv t t
v

    

or 0
0 01

546 546t
vtv v v t 

    
 

or                  10
0 332 m s

546 546t
v t tv v     1

0[ 332 m s ]v 

or                            1
0 0.608 ms 0.61 mstv v t t     –1
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Temperature coefficient of velocity of sound,

 = 0tv v
t


 = 0.61 m s–1 °C–1

When t = 1°C, then 1
0 0.61 m stv v     or  61 cm s–1

So, the velocity of sound increases by 0.61 m s–1 for every one degree
centigrade rise of temperature. This is known as the temperature
coefficient of velocity of sound in air.

(iii ) Effect of change in density
Consider two different gases at the same temperature and pressure

with different densities.

Then, 21
1 2

1 2

PP   and  v v 
 

 
or 21 1

2 2 1

v
v


 

 

For diatomic gases, 1 2   . 
21

2 1

v
v






So, the velocity of sound in a gas is inversely proportional to the
square root of the density of the gas.

Illustration. The density of oxygen is 16 times the density of
hydrogen.


2

H

O

v
v = 2O

H




 = 

H

H

16


 = 4

Thus, all other things being equal, sound travels four times faster
in hydrogen than in oxygen.

(iv ) Effect of humidity
We know that humid air contains a large proportion of water vapour.

So, the density m of moist air is less than the density d of dry air.

1.6d

m





Also, 0.9m

d






Let vm and vd be the velocities of sound in moist air and dry air
respectively.

Then,                
P P     and    m d

m d
m d

v v
 

 
 
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P

P
m m d m d

d m d d m

v
v

  
   

   

or 1m

d

v
v

 or vm > vd

So, sound travels faster in moist air than in dry air. This explains as
to why sound travels faster on a rainy day than on a dry day.

(v ) Effect of wind
Let wind travel with a velocity w making

an angle  with the direction of propagation of
sound [Fig. 5.9]. Then, the effective velocity of
sound will be (v + w cos ).

If the wind blows in the direction of sound,
then the velocity of sound will be increased
from v to (v + w). If the wind blows in a direction
opposite to the direction of propagation of
sound, then the velocity of sound is decreased from v to (v – w). If wind
blows perpendicular to the direction of sound, then  = 90° and cos  =
cos 90° = 0. So, there will be no effect on velocity of sound.

Example 6. At what temperature will the velocity of sound in hydrogen
be twice as much as that at 27°C ?

Solution.
27

tv
v

=
273

273 27
t



or
27

27

2 v
v


= 
273

300
t

or    4 = 
273

300
t

or 273 + t = 1200 or t = 927°C

Example 7. At normal temperature and pressure, the speed of sound
in air is 332 m s–1. What will be the speed of sound in hydrogen (i) at
normal temperature and pressure, (ii) at 819°C temperature and
4 atmospheric pressure ? Given : air is 16 times heavier than hydrogen.

Solution. (i ) Let va and vh represent the speeds of sound in air and
hydrogen respectively.

w



vw cos 

Fig. 5.9. Effect of wind on
velocity of sound
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va =
P

ad


and
P

h
h

v
d




Now,
a

h

v
v = h

a

d
d But

1
16

h

a

d
d




a

h

v
v =

1 1
16 4



or 14 4 332 m sh av v     = 1328 m s–1

(ii) Pressure has no effect on the velocity of sound.

819

0

v
v =

273 819 1092 4 2
273 0 273


  



or v819 = 2 × v0 = 2 × 1328 m s–1 = 2656 m s–1

Statement. The displacement due to a number of waves acting
simultaneously at a point in a medium is the sum of the
displacement vectors due to each one of them acting separately.

Since displacements are either positive or negative, therefore, the
net displacement is an algebraic sum of the individual displacements.

An interesting property of a wave is that it preserves its individuality
when travelling through space. Each wave behaves as if it has nothing
to do with other waves. This fact is amply illustrated by the following
examples.

(i ) In an orchestra, different musical instruments are playing
simultaneously. But we can detect the note produced by an individual
instrument.

(ii) Different radio waves cross the antenna. But we can pick up any
given frequency.

These examples establish the independent behaviour of a wave.
Huygen’s principle of superposition is a natural consequence of the
independent behaviour of a wave.
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Consider two pulses (in a string)
approaching each other as shown in
Fig. 5.10 (a). When the pulses cross
each other, they combine to produce a
zero resultant throughout the string as
shown in Fig. 5.10 (b). After crossing
each other, they again begin to travel
independently as if nothing had
happened as shown in Fig. 5.10 (c).

Following are the three
consequences of the principle of superposition of waves.

(i) Two waves of the same frequency move with the same velocity in
the same direction. This gives rise to the phenomenon of interference
of waves.

(ii) Two waves of identical frequencies and amplitudes travel along
the same path with the same speeds in the opposite directions. This
gives rise to stationary waves.

(iii) Two waves of slightly different frequencies moving with the same
velocity in the same direction give rise to the phenomenon of beats.

A progressive wave is one which travels in a given direction with
constant amplitude, i.e., without attenuation.

In the following treatment, we shall consider transverse wave motion.
However, the treatment is valid for
longitudinal wave motion also.

Let a plane wave originate at O
as shown in Fig. 5.11. Let it proceed
from left to right in an elastic
medium. As discussed earlier,
particles of the medium shall
execute SHM of the same amplitude
and time period about its mean

(a)

(b)

(c)

Fig. 5.10. Two pulses having equal and
opposite displacements moving in
opposite directions. The overlapping
pulses add up to zero displacement in (b).

x

O
P

B

Fig. 5.11. Plane progressive wave
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position. Let us count time from the instant the particle at O crosses its
mean position in the positive direction of Y-axis. The displacement y of
the particle at any time t is given by

y(0, t) = A sin t
where A and  represent the amplitude and angular frequency
respectively of simple harmonic motion executed by the particle at O.

Since the disturbance is handed over from one particle to the next
therefore there is a gradual fall in phase from left to right, i.e., in the
direction of motion. Let the phase of particle at P lag behind the phase
of particle at O by . Then, the displacement of particle at P at any time
t is given by

y(x, t) = A sin (t – ) ...(1)

At B, which is one wavelength  apart from O, the phase difference
is 2. In other words, particles at O and B have the same phase of
vibration.

At a distance , the phase changes by 2.

At a distance x, the phase changes by 
2 .x



  
2 x

 


where x is the distance of P from O.

From equation (1), 
2( , ) A siny x t t x 

   
 

...(2)

Now,  
2   and  T =
T v
 

 

  
2 v 


where v is called the wave velocity or phase velocity.

From equation (2), 2 2( , ) A siny x t vt x  
  

  

or
2( , ) A sin ( )y x t vt x

 


...(3)

Also, ( , ) A sin2 v xy x t t 
   

  
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or ( , ) A sin 2
T
t xy x t  

   
 

...(4)

Again, from equation (2), ( , ) A sin ( )y x t t kx   ...(5)     
2 k  

  

Discussion. (i) While arriving at the wave equation, we have made a
particular choice of t = 0. The origin of time has been chosen at an
instant when the left end x = 0 is crossing its mean position y = 0 and
is moving up. For a general choice of the origin of time, we need to
add a phase constant (also known as initial phase angle) 0 so that
equation (5) will be,

y = A sin [(t – kx) + 0] ...(6)

For 0 = 2


, y = A sin ( )
2

t kx  
   

 

or        y = A cos (t – kx) ...(7)

Using cos (– ) = cos ,

      y = A cos (kx – t) ...(8)

For  0 = , y = A sin [(t – kx) + ]

or       y = – A sin (t – kx)

Using           sin (– ) = – sin ,

                   y = A sin (kx – t) ...(9)

For 0 = 
3
2


, y = A sin 
3( )
2

t kx  
   

 

                   y = – A cos (t – kx)
For 0 = 2, y = A sin [(t – kx) + 2]

or                    y = A sin (t – kx) ...(10)

The amplitude of a wave is the magnitude of maximum
displacement of the constituents of the medium from their
equilibrium positions as the wave passes through them.

In the equation of the travelling wave, y(x, t) varies between A and
– A. This is because the sine function varies between 1 and – 1. Without
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any loss of generality, we can take A to be a positive constant. Then A
represents the maximum displacement of the constituents of the medium
from their equilibrium position. Note that the displacement y may be
positive or negative, but A is positive. It is called the amplitude of
the wave.

The phase of a wave is a quantity which determines the
displacement of the wave at any position and at any instant.
Mathematically, the quantity appearing as the argument of the sine
function in the equation of the travelling wave is called the phase of
the wave. It is denoted by .

Considering equation y(x, t) = A sin (t – kx + 0),
 = t – kx + 0

Clearly, 0 is the phase at x = 0 and t = 0. Hence 0 is called the
initial phase angle. By suitable choice of origin on the x-axis and the
initial time, it is possible to have 0 = 0. Thus, there is no loss of
generality in dropping 0 i.e., in considering equations of travelling
wave with 0 = 0.

The minimum distance between two points having the same phase
is called the wavelength of the wave. It is usually denoted by .

For simplicity, we can choose points of the same phase to be crests
or troughs. The wavelength is then the distance between two consecutive
crests or troughs in a wave. Considering the equation y(x, t) = A sin
(kx – t), the displacement at t = 0 is given by

y(x, 0) = a sin kx
Since the sine function repeats its value after every 2 change

in angle,

 sin kx = sin (kx + 2n) = sin k 
2nx
k
 

 
 

That is the displacements at points x and at x + 
2n
k


 are the same,
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where n = 1, 2, 3, ... . The least distance between points with the same
displacement (at any given instant of time) is obtained by taking n = 1.
 is then given by

 = 
2
k


or k = 
2


k is the angular wave number or propagation constant. Its SI unit is
radian per metre or rad m–1. Sometimes, k is simply measured in m–1.
Angular wave number is 2 times the number of waves that can be
accomodated per unit length.

Time period of a wave is equal to the time taken by the wave to
travel a distance equal to one wavelength.  It is denoted by T.

Frequency of a wave is the number of complete wavelengths
traversed by the wave in one second. It is denoted by .

Angular frequency of a wave
is 2 times the frequency of the
wave.

Fig. 5.12 shows the sinusoidal
plot of a travelling wave. It helps us
to describe the displacement of an
element (at any fixed location) of the
medium as a function of time. Let
us consider the equation : y(x, t) =
A cos (kx – t) and monitor the
motion of the element, say at x = 0.

y(0, t) = A sin (– t)
= – A sin t

Now, the period of oscillation of the wave is the time it takes for an
element to complete one full oscillation. That is

– A sin t = – A sin (t + T)
= – A sin (t + T)

Since sine function repeats after every 2.

 T = 2 or  = 
2
T


y

t
A

T

Fig. 5.12. An element of a string at a fixed
location oscillates in time with amplitude A
and period T, as the wave passes over it
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 is called the angular frequency of the wave. Its SI units is rad s–1.
The frequency  is the number of oscillations per second. Therefore,

 = 
1
T 2






 is usually measured in hertz.

Example 8. A wave travelling along a string is described by,
y(x, t) = 0.005 sin (80.0 x – 3.0 t),

in which the numerical constants are in SI units (0.005 m, 80.0 rad m–1,
and 3.0 rad s–1). Calculate (a) the amplitude, (b) the wavelength, and
(c) the period and frequency of the wave. Also, calculate the displacement
y of the wave at a distance x = 30.0 cm and time t = 20 s?

Solution. On comparing the given displacement equation with

                          ( , ) sin ( ),my x t y kx t  

we find
(a) the amplitude of the wave is 0.005 m = 5 mm
(b) the angular wave number k and angular frequency  are

k = 80.0 rad m–1 and  = 3.0 rad s–1

We then relate the wavelength  to k through 2 /k  

                                 1
2  rad

80.0 rad m


  = 7.85 cm

(c) Now we relate T to  by the relation T = 2/

1
2  rad

3.0 rad s


  = 2.09 s

and frequency,  = 1/T = 0.48 Hz
The displacement y at x = 30.0 cm and time t = 20 s is given by

               0.005 m sin (80.0 0.3 3.0 20)y    

                  0.005 m sin ( 36 rad)   = 5 mm

Example 9. Given : 0.8 sin16
40
xy t 

   
 

 metre. Calculate the

wavelength and the velocity of the wave represented by this equation.

Solution. Rewriting the given equation,
80.8 sin 2 8    or   0.8 sin 2 8
40 5

x xy t y t   
        

   
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Comparing with   A sin 2 ,  we get
T
t xy  

    

1 8
T
   or   = 8 Hz,  = 5 m

Velocity, v =  = 40 m s–1

(i ) First or Fundamental mode of vibration. In this mode of
vibration, the string vibrates as a whole in one segment (Fig. 5.13a).
There are two nodes and one antinode. If 1 is the wavelength of the
standing wave, then 1

2


 = L or 1 = 2L. The corresponding frequency of
vibration is given by

1 = 
1

1 T
2L 2L

v v
 

 

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

N

N

N

A

A

A

A

A

A

A

A

AA

A

A

A

A

N

N N

N

N

N

N

N

N

N

N

N

       
  Fundamental
or first harmonic

  (a)

           
 second harmonic

 (b)

          
 third harmonic

(c)

          
fourth harmonic

(d)

     
fifth harmonic

   (e)

          
sixth harmonic

(f)

L =
1
2

L = 2

L =
3
2
3

Fig. 5.13. Stationary waves in a stretched string fixed at both ends.
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This is the lowest possible natural frequency of the string. This
frequency is called fundamental frequency. The sound or note produced
is called fundamental note or fundamental tone or first harmonic.

(ii ) Second mode of vibration. In this mode of vibration, the string
vibrates in two segments or loops of equal length (Fig. 5.13b). There are
three nodes and two antinodes. If 2 is the wavelength of the standing
wave, then 2 = L. The corresponding frequency of vibration is given by

2 = 
2

2
L 2L

v v v 
   

  

= 21 = 2
1 T
2L
 
 

 

The frequency of vibration of the string becomes twice the
fundamental frequency. The note produced is called first overtone or
second harmonic.

(iii ) Third mode of vibration.  In this mode of vibration, the string
vibrates in three segments or loops of equal length (Fig. 5.13c). If 3

is the wavelength, then L = 33
2


 or 3 = 
2L
3

. The corresponding
frequency is

3 = 
3

3
2L

v v



 = 3 2L

v 
 
 

 = 31 = 3
1 T
2L
 
 

 

The frequency of vibration of the string becomes three times the
natural frequency. The note produced is called second overtone or
third harmonic.

Figs. 5.13(d), (e) and (f) show fourth, fifth and sixth mode of vibration.
In general, if the string is made to vibrate in n loops or segments,

then L = n
2
n or n = 

2L
n . n = 

n

v


 = n
2L
v

or n = 
T

2L
n



Positions of Nodes. In the first mode, there are two nodes. These
are located at x = 0, L. In the second mode, there are three nodes.

These are located at x = 0, 
L
2

, L. In the third mode, there are four nodes

located at x = 0, L 2L,
3 3

, L. In the nth mode, there will be (n + 1) nodes

located at x = 0, L 2L 3L, , ,
n n n

 ......, L .
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Positions of Antinodes. In the first mode, there is one antinode

located at x = 
L
2

. In the second mode, there are two antinodes located

at x = 
L 3L,
4 4

. In the third mode, there are three antinodes located at

x = 
L 3L 5L, ,
6 4 6

. In the nth mode, there are n antinodes located at

x = 
L 3L 5L, ,
2 2 2n n n , ..., 

(2 1)L
2

n
n


.

We know that
1 T
2L

 


The following laws of vibrations of strings follow from this equation.

(i ) Law of length. If the tension in a given string remains constant,
then the fundamental frequency varies inversely as the length.

1
L

 

If the length of the string is halved, the frequency is doubled.

(ii ) Law of tension. For a string of given length and material, the
fundamental frequency varies directly as the square root of the tension.

T 

If the tension is increased four times, the frequency of the note
becomes double.

(iii ) Law of mass. For a string of given length and fixed tension, the
frequency varies inversely as the square root of linear density (mass
per unit length) of the string.


1

 


If linear density is quadrupled, the frequency is halved.
Consider a string of diameter D. Let  be the density of material of

the string.

Cross-sectional area of the string = 
2D

4

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Volume of unit length of string = 
2 2D D1

4 4
 

 

Mass per unit length = Volume of unit length × density


2D

4


   

 2
1 T 4 1 T
2L LDD


  

 

This leads to following two laws. Of course, both these laws are
contained in the law of mass stated earlier.

1. Law of diameter. For a string of given length and tension, the
frequency is inversely proportional to the diameter of the string.

1
D

 

So, thinner the string, higher is the frequency of vibration.
2.  Law of density. For a string of given length, diameter and tension,

the frequency is inversely proportional to the square root of the density
of the material of the string.

1
 



Smaller the density, higher is the frequency of vibration.

Example 10. A steel wire 0.72 m long has a mass of 5.0 × 10–3 kg.
If the wire is under a tension of 60 N, what is the speed of transverse
waves in the wire ?

Solution. Mass per unit length of wire,

 = 
35.0 10 kg

0.72 m


 = 6.9 × 10–3 kg m–1

Tension, T = 60 N

Speed of wave on the wire, v = 
T


= 3
60

6.9 10
 m s–1 = 93.25 m s–1
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Example 11. A 100 cm long wire of
mass 40 g supports a mass of
1.6 kg as shown in Fig. 5.14. Find the
fundamental frequency of the portion of
the string between the wall and the
pulley. Take g = 10 m s–2.

Solution. T = 1.6 kg wt = 1.6 × 10 = 16 N

 = 
340 10

1

  = 0.04 kg m–1

L = (100 – 20) cm = 0.8 m

 = 
1 T
2L 

= 
1 16

2 0.8 0.04
 Hz = 12.5 Hz

Example 12. A sonometer wire carries a brass weight (specific gravity
= 8) at its end and has a fundamental frequency of 320 Hz. What would
be its frequency if this weight is completely immersed in water?

Solution. When the weight is immersed in water, buoyancy is 
T
8

,
where T is the tension in the wire.

Net tension = T – 
T 7T
8 8


 = 320 7
8

 Hz = 293.3 Hz

(i ) Introduction. It is a wind instrument in which sound is produced
by setting into vibrations an air column in it.

(ii ) Construction. It consists of a
wooden or metallic hollow tube called
resonator (R). A narrow tapering opening
called mouth-piece (m) is provided at one
end of the resonator as shown in Fig. 5.15.
A slanting solid called bevel (B) is fitted near
the mouth-piece. The height of the bevel is

Fig. 5.14

20 cm

80 cm

1.6 kg

l

s

m

RB

Fig. 5.15. Open organ pipe
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such that there is only a narrow slit s between the bevel and the wall of
the resonator. A sharp edge (l ) is provided in the wall of the resonator.
This is called the lip of the pipe.

(iii ) Working. Air is blown into the pipe through the mouth-piece.
After striking against the bevel, the air passes through the narrow slit s
in the form of a thin sheet. This fast moving sheet of air strikes against
the lip setting it into vibrations. The vibrating lip produces a sound
called edge tone. The frequency of the edge tone depends not only on
the pressure with which air is blown into the pipe but also on the
distance of the lip from the slit.

(iv) Formation of longitudinal stationary waves. When the waves
reach the open end of the pipe, they are reflected. This is because the
air outside the resonator is rarer than the air inside it. The reflected
and the incident waves superpose to give longitudinal stationary waves
with fixed nodes and antinodes. When the frequency of the vibrating
air column in the resonator becomes equal to the frequency of the edge
tone, resonance occurs and hence loud sound is produced.

Since both the ends of the pipe are open therefore the waves are
reflected from these ends. However, the particles continue to move in
the same direction even after the reflection of the waves at the open
ends. So, the particles have maximum displacements at the open ends.
Thus, antinodes are formed at the open ends.

Fundamental or First normal mode of vibration
This is the simplest mode of vibration in which the antinodes at the

ends are separated by a node in the middle.
In this mode of vibration,

1 L
2


    or 1 2L 

Frequency,       1
1

v
 


   or 1 2L

v
 

Since this is the simplest mode of vibration therefore the sound
produced is called fundamental tone or first harmonic. Longer the
resonator, lesser will be the frequency of sound produced.



2
1

A AN

L

Fig. 5.16. First mode of vibration



Physics—XI160

Second normal mode of vibration
In this mode of vibration, the

antinodes at the open ends are separated
by two nodes and one antinode [Fig. 5.17].

If L be the length of the resonator,
then

2 = L

Frequency, 2
2

v
 



or 2 2
2L
v

   or 2 12  

The sound produced in this mode of vibration is called first overtone
or second harmonic. The frequency of first overtone is two times the
frequency of the fundamental tone.

Third normal mode of vibration
In this mode of vibration, the

antinodes at the open ends are separated
by three nodes and two antinodes.

In this mode of vibration,

             33 L
2


 or 3
2L
3

 

Frequency, 3
3

v
 


 = 2L /3

v

or 3 3
2L
v

   or 3 = 31

The sound produced in this mode of vibration is called second
overtone or third harmonic. Its frequency is three times the
fundamental frequency.

By adjusting the pressure with which air is blown into the pipe, the
tones of frequencies 1, 21, 31, 41, ..... can be produced. Thus, the
frequencies of different overtones are simple integral multiples of the
frequency of fundamental tone.

In general, the frequency of vibration in nth normal mode of vibration
in an open organ pipe is given by:

A A A



N N

L

Fig. 5.17. Second mode of vibration

Fig. 5.18. Third mode of vibration

A N N NA A A

23
2

L
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n = n1

The note produced in this case is called nth harmonic or (n – 1)th
overtone. It would contain n nodes and (n + 1) antinodes.

Construction. Its construction is
similar to that of open organ pipe except
that its one end is closed. The waves
are reflected from the closed end as the
closed end behaves like a denser
medium. The incident and the reflected
waves superpose to form longitudinal
stationary waves having fixed nodes and antinodes. When the frequency
of the edge tone is equal to the frequency of vibration of the air column,
then the resonance takes place. Consequently, a loud sound is heard.

When the wave is reflected from the closed end, the direction of
motion of the particles changes. So, the displacement is zero at the
closed end. Thus, a node is formed at the closed end. On the other
hand, an antinode is formed at the open end. This is because the
displacement of particles is maximum at the open end.

Fundamental or First normal mode of vibration
This is the simplest mode of vibration in which there is a node at

the closed end and an antinode at the open end [Fig. 5.20].
If L be the length of the resonator, then

 1L
4


 or 1 = 4L

Frequency, 1
1

v
 


 = 4L

v

Since this is the simplest mode of
vibration therefore the sound produced
is called fundamental tone or first
harmonic. Longer the resonator, lesser
will be the frequency of sound produced.

s

RB

l

m

Fig. 5.19. Closed organ pipe

A
N

1

4

L

Fig. 5.20. First mode of vibration
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Second normal mode of vibration
In this mode of vibration, there is one antinode and one node

between a node at the closed end and an antinode at the open end
[Fig. 5.21].

In this case,  23
L

4


 or 2
4L
3

 

Frequency, 2
2 4L /3

v v
  



or 2 3
4L
v

      or 2 13  

The sound produced in this mode of vibration is called first overtone
or third harmonic. The frequency of the first overtone is three times
the frequency of the fundamental tone.

Third normal mode of vibration
In this mode of vibration, there are

two nodes and two antinodes between
a node at the closed end and an
antinode at the open end [Fig. 5.22].

In this case, 35L
4


 or    3
4L
5

 

Frequency,  3
3

v
 


 = 4L /5

v

or                      3 5
4L
v

       or 3 15  

The sound produced in this case is called second overtone or fifth
harmonic. The frequency of the second overtone is five times the
frequency of the fundamental tone.

By adjusting the pressure with which air is blown into the pipe, the
tones of frequencies 1, 31, 51,...... can be produced. Thus, the
frequencies of different overtones are odd multiples of the frequency of
fundamental tone.

In general, the frequency of vibration in nth normal mode of vibration
in a closed organ pipe is given by,

N NA A


4

L

Fig. 5.21. Second mode of vibration

N N NA A A

5
4

L

Fig. 5.22. Third mode of vibration
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n = (2n – 1) 4L
v

 = (2n – 1)1

The note produced in this case is called (2n – 1)th harmonic or
(n – 1)th overtone.

Comparison of closed and open organ pipes
(i ) Fundamental note in closed pipe has half the frequency of the

fundamental note in open pipe.
(ii ) In a closed pipe, only odd harmonics are present. In an open

pipe, all harmonics are present.
(iii ) The musical sound produced by an open pipe is richer than

the musical sound produced by a closed organ pipe.

Example 13. A closed organ pipe can vibrate at a minimum frequency
of 500 Hz. Find the length of the tube. Speed of sound in air = 340 m s–1.

Solution.   = 4L
v

or L = 
340

4 4 500
v


 

m = 0.17 m = 17 cm

Example 14. An open organ pipe emits a note of frequency 256 Hz
which is its fundamental. What would be the smallest frequency produced
by a closed pipe of the same length?

Solution.  For open organ pipe, 2L
v

 

  256    or   512 L
2L
v v 

For closed organ pipe, 
512 L

4L 4L
v

    = 128 Hz

When two sounding bodies of nearly the same frequency and same
amplitude are sounded together, the resultant sound comprises of
alternate maxima and minima.

The phenomenon of alternate waxing and waning of sound at regular
intervals is called beats.
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The number of beats heard per second is called beat frequency. It is
equal to the difference in the frequencies of sounding bodies. Beats are
heard only when the difference in frequencies of two sounding bodies
is not more than ten. This is due to persistence of hearing.

The time from each loud sound to the next loud sound is called one
beat-period.

Suppose at any place, two sound waves are in the same phase. The
amplitudes of the two sound waves will be added up resulting in
maximum amplitude. Since intensity is directly proportional to square
of amplitude therefore loud sound will be heard.

But since the frequencies are different, even though slightly, one
sound wave will start getting out of phase from the other as time passes
on. Eventually, the two waves will get out of phase with each other. This
will produce minimum amplitude resulting in a faint sound, i.e., sound
of low intensity. As time further elapses, the phase again goes on
changing and again, we get a loud sound. In this way we continue to
hear loud and faint sounds alternately. One loud sound plus one faint
sound constitute a beat.

Analytical treatment of beats. Consider two harmonic sound waves
of nearly equal frequencies 1 and 2. The periodic dips in sound, called
beats, will occur with a frequency equal to (1 – 2).

Let a be the amplitude of each wave. Let us count time from the
instant when the two sound waves are in the same phase. The
displacements s1 and s2 at a point due to the two waves are given by

11
 cos  2s a t  and 22  cos  2s a t 

For the sake of simplicity, it is assumed here that there is no initial
phase difference between the two wave trains. It is further assumed
that the waves propagate over long distances so that the boundary
effects can be neglected.

Applying the principle of superposition of waves,

21s s s 

or 1 2 cos  2 cos  2s a t a t   

or 1 2( cos  2 cos  2 )s a t t   

or 1 2 1 22 2 2 2
2cos cos

2 2
t t t ts a       

  
 
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or 1 2 1 2( ) ( )
2  cos 2 cos2

2 2
s a t t     
  

or 1 2 1 22  cos 2 cos2
2 2

s a t t          
      

    

or 1 2A cos 2
2

s t   
  

 

where 1 2A = 2  cos 2
2

a t     
   
  

 is

the amplitude of the resultant wave.
It may be noted that the frequency of
the resultant wave is the average of
the frequencies 1 and 2 of the
superposing wave trains.

The amplitude A of the resultant
wave is a function of time. A varies
between + 2a and –2a. The amplitude
A is *maximum, i.e., + 2a or – 2a when

1 2cos ( ) 1t     

or      1 2cos ( ) cost n     

where  n = 0, 1, 2,.......

or 1 2( )t n     

or           1 2( )t n   

or        
1 2 1 2 1 2 1 2

1 2 30,  ,  ,  ,....nt  
           

So, the time interval between two successive maxima is 1

1 2 
.

Similarly, the amplitude A is minimum (zero) when

1 2cos ( ) 0t     or 1 2
1cos ( ) cos( )
2

t n      

or 1 2
1( ) ( )
2

t n    

Experimental Demonstration
of Beats
Two identical tuning forks are
placed on two sound boxes as
shown. Attach a little wax to one
prong of tuning fork A. Set the
two forks into vibration. Beats
will be heard. On changing the
amount of wax, the number of
beats per second will change.

A B

*Since amplitude is maximum       intensity is also maximum.
It is proportional to 4a2.
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or      
231 1

2 2 2 2

1 2 1 2 1 2 1 2
,  ,  ,.....

n
t


 
           

So, the time interval between two successive minima is  
1 2

1 .
  

Thus, we find that maxima and minima occur at regular intervals of

1 2

1 .
  

 So, the beat frequency is (1 – 2). This is equal to the difference

in the frequencies of the two
superposing wave trains.

Graphical  representation of
beats

Fig. 5.23 illustrates the
phenomenon of beats for two
harmonic waves of frequencies 11 Hz
and 9 Hz. The amplitude of the
resultant wave shows beats at a
frequency of 2 Hz.

(a) To determine unknown
frequency

The tuning fork of unknown
frequency is sounded with a standard
tuning fork of known frequency so
that the beats are heard. The number
of beats heard per second is determined. This is equal to the difference
of ‘unknown frequency’ and ‘known frequency’. Let N be the frequency
of the standard tuning fork. Let ‘a’ beats be heard per second. Then the
unknown frequency is either (N + a) or (N – a).

To decide about the positive or negative sign, one of the prongs of
the tuning fork of unknown frequency is loaded with wax. This decreases
the frequency. Now, if the two tuning forks are sounded together, we
will  not hear ‘a’ beats per second. If the number of beats heard per
second is greater than a, then (N – a) was the correct frequency. If on
loading, the number of beats heard per second is less than a, then
(N + a) was the correct frequency of the fork.

1.0

–1.0

0
y

1.0

–1.0

0
y

t(s)
2.00.5 1.0 1.5

2.0

1.0

–1.0

–2.0

0y

(a)

(b)

(c)

t(s)

t(s)

Fig. 5.23. Superposition of two harmonic
waves, one of frequency 11 Hz. (a), and the
other of frequency 9 Hz. (b), giving rise to
beats of frequency 2 Hz, as shown in (c).
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If instead of loading one prong, it is filed, then the reverse results
will be true.

Note that when a prong is filed a little, it becomes lighter and its
frequency of vibration increases.

(b) Use in music. (i) For tuning musical instruments. The tension in
the string of one of the two instruments is altered till beats are heard.
This will occur at nearly equal frequencies. Keep on adjusting carefully
till the beats disappear. Now, the two instruments are in tune.
(ii ) Sometimes in an orchestra, a deliberate ‘beating’ sound is produced.
This gives the effect of a sonorous vibrating sound and is generally
appreciated in musical performance.

(c) Use in electronics. Electronic beat frequency oscillators are
commonly used to generate a beat frequency (BF) which is audible.
Also in modern radio receivers, ultrasonic beats are generated and radio
reception is obtained.

(d) Use in mines. The presence of dangerous gases in mines may be
detected by the use of beats.

Example 15. In an experiment, it was observed that a tuning fork and
a sonometer wire gave 5 beats per second both when the length of
wire was 1 m and 1.05 m. Calculate the frequency of the fork.
Solution. Let the frequency of the fork be . At the smaller length of
th e so n o m eter w ire (l1 = 1 m), the frequency of the wire must be higher
i.e., 1 =  + 5; and at the larger length (l2 = 1.05 m), the frequency
must be lower.

 2 =  – 5

According to the law of length, 
21

2 1

l
l






    
5 1.05
5 1.00

 


 

On solving, we get = 205 Hz

Example 16. Two tuning forks A and B when sounded together give
4 beats/s. A is in unison with the note emitted by a 0.96 m length of a
sonometer wire under a certain tension. B is in unison with 0.97 m length
of the same wire under the same tension. Calculate the frequencies of
the forks.
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Solution. A is in unison with a smaller length of the wire as compared
to B. So, A has higher frequency as compared to B. Let  be the
frequency of A.

Then,     
4 0.96 96

0.97 97
 

 


1 
l

 
  

 


or
4 11 1

97
  


or
4 1

97




or 4 97 Hz    = 388 Hz

The apparent change in the frequency of sound when the source of
sound, the observer and the medium are in relative motion is called
Doppler effect.

Doppler effect applies to waves in general. This effect has been named
after German-born Austrian Physicist Christian Johann Doppler
(1803–1853).

Whenever there is relative motion between a listener (or observer)
and a source of sound, the pitch or frequency of sound appears to be
changed. If the source of sound is approaching the listener or the listener
is approaching the source of sound or both are approaching each other,
then the frequency of sound appears to be higher than the true
frequency. If the source of sound is receding away from the listener or
the listener is receding away from the source of sound or both are
receding away from each other, then the frequency of sound appears to
be lower than the true frequency.

Let us now derive expressions for the apparent frequency of sound
in different cases. While deriving these expressions, we make the
following assumptions :

(i ) The velocity of the source, the observer and the medium are
along the line joining the positions of the source and the observer.

(ii ) The velocity of the source and the observer is less than the
velocity of sound.

(iii ) The velocity of sound is always positive.
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Case I. Source in motion, Observer at rest, Medium at rest
Suppose the source S and the observer O are separated by distance

v, where v is the velocity of sound. Let  be the frequency of the sound
emitted by the source. Then,  waves will be emitted by the source
in 1 second. These  waves will be accommodated in distance v
[Fig. 5.24 (a)]. Let the source start moving towards the observer with
velocity vs. After one second, the  waves will be crowded in distance
(v – vs) [Fig. 5.24 (b)]. Now, the observer shall feel that he is listening to
sound of wavelength  and frequency .

 waves

v
S

O

(a)  Both source and observer at rest

v s vv s

S S’
O

(b)  Source moving towards the observer

 waves

Fig. 5.24

Now,              or  
/s

v v
v v

    
  

or                        or  
s s

v v
v v v v


     

 

So, as the source of sound approaches the observer, the apparent
frequency  becomes greater than the true frequency .

If the source is receding away from the observer, then the apparent
frequency is given by

s

v
v v

  


Case II. Observer in motion, Source at rest, Medium at rest
Let the source and observer occupy positions marked S and O

respectively in Fig. 5.25 (a). Now take a point A such that OA = v. If both
S and O are in their respective places, then  waves given by S would be
crossing O in 1 second and would fill the space OA (= v). In one second, O
moves towards S with velocity vo such that OO = vo. So, the observer has
received not only the  waves occupying OA but has also received
additional number of waves occupying the distance OO. Thus in one
second, the observer receives waves occupying the space AO such that
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AO = ov v 

(a)  Both source and observer are at rest

 waves

S O A

v

(b) Observer moving towards source

v o
S O AO

v

Fig. 5.25

Number of waves in distance v = 

Number of waves in unit distance = v


Number of waves in distance (v + vo) ( )ov v
v


 

Apparent frequency, ( )ov v
v


  

ov v
v


  

If the observer is moving away from the source, then the apparent
frequency is given by

ov v
v


  

Case III. When both the Source and Observer are moving towards
each other

When the source moves towards a stationary observer,

s

v
v v

  


Again, when the observer moves towards a stationary source,
ov v

v


  

When both the source and observer move towards each other, then
apparent frequency is given by

o

s

v v v
v v v


   


or
o

s

v v
v v


  


If both the source and observer move in the direction of sound,
then

o

s

v v
v v


  

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(i ) To determine the velocity of a star, galaxy etc.
Doppler’s effect can be used to determine the velocity of approach

or recession of a heavenly body towards or away from the Earth. When
light from a star is examined by a spectroscope, the spectrum is found
to consist of several well-defined spectral lines. If the star is approaching
the Earth, a shift of spectral lines occurs towards the violet end of the
spectrum. This indicates a decrease in wavelength.

When the star is receding away from the Earth, the spectral lines
shift towards the red end of the spectrum indicating an increase in
wavelength. These changes of wavelength on account of motion of star
are called spectral shifts. These help us to calculate the velocity of
approach or the velocity of recession of the star.

Let the star be receding away from the Earth with velocity v. Then
applying Doppler’s effect, the apparent frequency of the light waves
coming from the star is given by

c
c v

  


where c is the velocity of light and  is the true frequency of light waves.

  



 = 

c
c v

But   
c

 


and  c
 


where  and  are the apparent wavelength and true wavelength
respectively.


c

c





 = orc c
c v c v




  

or      



 = 1c v v

c c


 

or 1




 = orv v

c c
  




or     



 = orv v

c c
  

By knowing the value of , we can calculate the velocity v of the
star with respect to Earth. It has been generally observed that the
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wavelength of light received from the stars shifts slightly towards the
red end of the spectrum. This ‘red shift’ shows that the stars are receding
away from us. So, our universe is expanding.

(ii) Radar
It measures not only the distance and location of an aeroplane but

also its velocity by determining the frequency shift.

We know that = 
1

s

s

c vc
c v c


 

    
  

 = 1 s sv v
c c

 
      
 

or                       –  = ors sv v
c c
    or vs = c





So, by determining the frequency shift , vs can be calculated.
This has to be halved to get the approach velocity of the aeroplane.

Example 17. Determine the velocity of sound when the frequency
appears to be double the actual frequency to a stationary observer.

Solution.                  
s

v
v v

  


Now,                     2    2
s

v
v v

  


or                    2v – 2vs = v or v = 2vs or vs = 2
v

The source should approach the stationary observer with a velocity
equal to half the velocity of sound.

Example 18. A factory siren whistles a note of frequency 680 Hz.
A man travelling in a car at 108 km h–1 moving towards the factory
hears the whistle. What is the apparent frequency of the sound as heard
by him? Given : speed of sound in air = 340 m s–1.

Solution. vo = 1 1 15108 km h 108 m s 30 m s
18

    

v = 340 m s–1,  = 680 Hz

' = 
340 30 680 Hz

340
ov v

v
 

    = 740 Hz

Example 19. Two railway trains, each moving with a velocity of
108 km h–1, cross each other. One of the trains gives a whistle whose
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f requency is 750 Hz. What will be the apparent f requency for
passengers sitting in the other train before crossing ? Given : speed of
sound = 330 m s– 1.

Solution. vs
 = 1 1 15108 km h 108 m s 30 m s

18
    

vo
 = 108 km h–1 = 30 m s– 1

Note that the source and the observer are approaching.

 Apparent frequency,   = o

s

v v
v v






330 30 750 Hz
330 30


  


= 900 Hz

Intensity of sound represents the sound energy that flows per
second across a unit area held normal to the direction of flow.

This is an objective physical definition. The feeling in the listener’s
mind is spoken of as loudness. Thus, a sound of high intensity possesses
a greater loudness.

(i ) According to Weber-Fechner law, the loudness L of sound is
directly proportional to the logarithm of intensity I.

                              L log I or L K log I 

Here, K is a constant of proportionality.
(ii ) Consider two sounds of same frequency having intensities I1

and I0 respectively. Let L1 and L0 be their corresponding loudness.
Then, L1 = K log10 I1 and L0 = K log10 I0

Intensity level, L = L1 – L0 = K [log10 I1 – log10 I0]

or L = 1
10

0

IK log
I
 
 
 

(iii ) Let I0 represents the standard reference intensity (also called
zero level of intensity). Its value is 10–12 W m–2. It corresponds to the
threshold audibility of a healthy human ear at a frequency of 1000 Hz.

If K = 1, then L is measured in bel. [The unit is named in honour of
Alexander Graham Bell, the inventor of Telephone.]
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Now,   L = 1
10

0

Ilog bel
I
 
 
 

If  I1 = 0
0 10 10

0

10I10I , then L log log 10 1 bel
I

  

The intensity level of sound is said to be one bel if the intensity of
sound is ten times the zero level of intensity.

The intensity level of sound will be 2 bel if the intensity of sound is
100 times the zero level of intensity.

(iv ) Since bel is a large unit, therefore, a smaller unit called decibel
(dB) is used.

1dB =
1 bel.

10

Again, L = 1
10

0

I10 log decibel
I
 
 
 

If L = 1 decibel, then 1
10

0

I 1log = 0.1
I 10
 

 
 

or
1

0

I
I = antilog (0.1) = 1.2589   1.26

We can conclude from here that a 26 percent increase in the intensity
raises the intensity level by 1 decibel. It is interesting to note that it is
the smallest change in intensity level that a healthy human ear can
detect.

If I1 = 100 I0,

then L = 0
10

0

100 I10 log
I

 
 
 

 = 10 log10100

= 10 log10102 = 20 log1010
= 20 decibels

So, if the louder of the two sounds is 100 times more intense, then
the two sounds differ by 20 decibels. Similarly, if the louder of the two
sounds is 1000 times more intense, then the two sounds will differ by
30 decibels.
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Do the review exercises in your notebook.

1. A tuning fork of frequency 512 Hz makes 4 beats per second with
the vibrating string of a piano. The beat frequency decreases to
2 beats per second when the tension in the piano string is slightly
increased. The frequency of the piano string before increasing the
tension was
(a) 510 Hz (b) 514 Hz
(c) 516 Hz (d) 508 Hz.

2. A transverse wave is represented by y = A sin (t – kx).
For what value of the wavelength is the wave velocity equal to the
maximum particle velocity?

(a)
A
2


(b) A

(c) 2A (d) A.
3. Two strings A and B are slightly out-tune and produce beats of

frequency 5 Hz. Increasing the tension in B reduces the beat
frequency to 3 Hz. If the frequency of string A is 450 Hz, calculate
the frequency of string B.
(a) 460 Hz (b) 455 Hz
(c) 445 Hz (d) 440 Hz.

4. A resonance pipe is open at both ends and 30 cm of its length is in
resonance with an external frequency 1.1 kHz. If the speed of
sound is 330 m s–1 which harmonic is in resonance ?
(a) first (b) second
(c) third (d) fourth.

5. When two progressive waves y1 = 4 sin (2x – 6t) and y2 = 3 sin

2 6
2

x t  
  

 
 are superimposed, the amplitude of the resultant

wave is
(a) 2 (b) 3
(c) 4 (d) 5.
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6. A wave motion is described by y(x, t) = a sin (kx –  t). Then the
ratio of the maximum particle velocity to the wave velocity is

(a) a (b)
1

ka
(c) k


(d) ka.

7. Velocity of sound in air is 320 m s–1. A pipe closed at one end has
a length of 1 m. Neglecting end correction, the air column in the
pipe cannot resonate with sound of frequency
(a) 80 Hz (b) 240 Hz
(c) 320 Hz (d) 400 Hz

8. A whistle is blown from the tower of a factory with a frequency of
220 Hz. The apparent frequency of sound heard by a worker moving
towards the factory with a velocity of 30 m s–1 is (Velocity of sound
= 330 m s–1)
(a) 280 Hz (b) 200 Hz
(c) 300 Hz (d) 240 Hz

9. The frequencies of two tuning forks A and B are respectively 1.5%
more and 2.5% less than that of the tuning fork C. When A and B
are sounded together, 12 beats are produced in 1 second. The
frequency of the tuning fork C is
(a) 200 Hz (b) 240 Hz
(c) 360 Hz (d) 300 Hz

10. Two pipes are each 50 cm in length. One of them is closed at one
end while the other is open at both ends. The speed of sound in air
is 340 m s–1. The frequency at which both the pipes can resonate is
(a) 680 Hz (b) 510 Hz
(c) 85 Hz (d) none of the above.

1. A train moving towards a hill at a speed of 72 km h–1 sounds a
whistle of frequency 500 Hz. A wind is blowing from the hill at a
speed of 36 km h–1. If the speed of sound in air is 340 m s–1, the
frequency heard by a man on the hill is__________ .

2. When two sound sources of the same amplitude but of slightly
different frequencies n1 and n2 are sounded simultaneously, the
sound one hears has a frequency equal to __________ .

3. A travelling wave represented by y = A sin( t  – kx) is superimposed
on another wave represented by y = A sin ( t  + kx). The resultant
is  __________ .
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4. Two identical piano wires, kept under the same tension T have a
fundamental frequency of 600 Hz. The fractional increase in the
tension of one of the wires which will lead to occurrence of 6 beats/
s when both the wires oscillate together would be __________.

5. Sound waves travel at 350 m s–1 through warm air and at 3500 m s–1

through brass. The wavelength of a 700 Hz acoustic wave as it enters
brass from warm air __________ .

6. Tube A has both ends open while tube B has one end closed.
Otherwise they are identical. Their fundamental frequencies are
in the ratio __________ .

7. The speed of sound in a gas of density  at a pressure P is
proportional to __________ .

8. The intensity ratio of two waves at a point is 
4
9

. The amplitude
ratio will be __________ .

9. Two sound waves travel in the same direction in a medium. The
amplitude of each wave is A and the phase difference between the
two waves is 120°. The resultant amplitude will be __________ .

10. A plane progressive wave is given by
            y = 2 cos 6.284 (330t – x).
The period of the wave is __________ .

1. What is the range of frequency of audible sound?
2. Why does sound travel faster in iron than in air?
3. What kind of waves help the bats to find their way in the dark?
4. The velocity of sound in air is 332 m s–1. Find the frequency of the

fundamental note of an open pipe 50 cm long.
5. In which gas, hydrogen or oxygen, will sound have greater velocity?
6. In a resonance tube, the second resonance does not occur exactly

at three times the length at first resonance. Why?
7. The frequency of the fundamental note of a tube closed at one end

is 200 Hz. What will be the frequency of the fundamental note of a
similar tube of the same length but open at both ends?

8. A wave transmits energy. Can it transmit momentum?
9. A string has a linear density of 0.25 kg m–1 and is stretched with a

tension of 25 N. What is the velocity of the wave?
10. By how much the wave velocity  increases for 1°C rise of temperature?
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1. A tuning fork of unknown frequency gives 4 beats with a tuning
fork of frequency 310 Hz. It gives the same number of beats on
filing. Find the unknown frequency.

2. The string of a violin emits a note of 540 Hz at its correct tension.
The string is bit taut and produces 4 beats per second with a
tuning fork of frequency 540 Hz. Find the frequency of the note
emitted by this taut string.

3. The air column in a pipe closed at one end is made to vibrate in its
second overtone by a tuning fork of frequency 440 Hz. The speed of
sound in air is 330 ms–1. Find the length of the air column. [End
correction may be neglected]

4. In the following series of resonant frequencies, one frequency
(lower than 400 Hz) is missing : 150, 225, 300, 375 Hz (a) What is
the missing frequency? (b) What is the frequency of the seventh
harmonic?

5. Flash and thunder are produced simultaneously. But thunder is
heard a few second after the flash is seen. Why?

1. Densities of oxygen and nitrogen are in the ratio 16 : 14. At what
temperature the speed of sound in oxygen will be the same as at
15°C in nitrogen?

2. Calculate the speed of sound in oxygen from the following data.
The mass of 22.4 litre of oxygen at STP (T = 273 K and P = 1.0 × 105

N m–2) is 32 g, the molar heat capacity of oxygen at constant volume
is Cv = 2.5 R and that at constant pressure is Cp = 3.5 R.

3. A sound wave of frequency 400 Hz is travelling in air at a speed of
320 m s–1. Calculate the difference in phase between two points
on the wave 0.2 m apart in the direction of travel.

4. A displacement wave is represented by
y = 0.25 × 10–3 sin (500t – 0.025 x),

where y, t and x are in cm, second and metre respectively. Deduce
(i ) the amplitude (ii ) the period (iii ) the angular frequency (iv ) the
wavelength. Deduce also the amplitude of particle velocity and
particle acceleration.

5. Two harmonic waves have the same displacement amplitude of
4 × 10–5 cm and their angular frequencies are 500 rad s–1 and
5000 rad s–1. Calculate (i ) particle velocity amplitude, and
(ii ) particle acceleration amplitude.



6.1.  LIGHT

Light is that form of energy (optical energy), which helps us in seeing 
objects from which it comes or from which it is reflected e.g., sun gives 
us light and hence we can see the sun.

Light may also be defined as that form of energy which produces in 
us the sensation of vision (sight).

(We do not see light because light itself is not visible, since no 
energy is visible.)

Light falling on the objects, returns from them and then falls on our  
eyes, which makes objects visible. Our eye is a natural optical 
instrument.

6.2.  SOURCES OF LIGHT
Objects from which the light comes out are called sources of light. 

Some sources are natural while many others are man–made. For us on 
the earth, Sun is the most important natural source of light. Electric 
lamps, oil lamps and candles are some of the man made sources of light.

Objects which are visible through the light emitted by them, are called 
luminous sources. Sun, stars, bulbs, candles, etc. are luminous 
objects.

There are certain objects which do not emit their own light but still 
we can see them e.g., table, chair, etc. This is due to the reason that 
when light from some source is incident on these objects, then it gets 
reflected or scattered. This reflected or scattered light enters our eyes 
and we are able to see these objects. These objects, which do not emit 
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their own light but become visible due to the light reflected or scattered 
by them are called non-luminous objects. Hence, we can say that light is 
the form of energy which produces in us the sensation of vision.

6.3.  NATURE OF LIGHT

Depending on the type of observation and level of understanding, 
there are two theories about the nature of light i.e., wave theory of 
light and particle theory of light.
	 (i)	 Wave theory of light. According to this theory, light travels 

from the source in the form of a wave. The waves are found to be 
transverse electromagnetic waves. These waves do not require 
any material medium for their propagation.

		  The speed of these waves is 3 × 108 m s–1  in vacuum and slightly 
less in air. The speed  of  light  is  represented by the symbol c. Its 
actual value is, c = 299,792,458 m s–1.

		  The wavelength of visible light ranges from 4 × 10–7 m to 8 × 10–7 m 
and is very small as compared to the size of usual objects. Light 
waves travel (propagate) from one point (source) to other in a straight 
line, called the ray of light. The rays are taken to be perpendicular 
to wave front (front of the wave).

	(ii)	 Particle theory of light. According to this theory, light is made up 
of some elementry particles, called photons which travel in straight 
line with very high speed.

		  Photons have only energy and no rest mass and no charge.
		  This particle nature has been used to explain a new additional 

phenomenon, called photoelectric effect.

6.4.  PHOTON ENERGY AND COLOUR OF LIGHT
White light consists of seven colours namely Violet, Indigo, Blue, 

Green, Yellow, Orange and Red (remembered by the word VIBGYOR).
Photon of red light has minimum frequency (minimum energy,  

E = hν) and the red light has maximum wavelength.
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Photon of violet light has maximum frequency (maximum energy, 
E = hν) and the violet light has minimum wavelength.

Thus we can say that, red light photons have minimum energy i.e., 
red light is least energetic and violet light photons have maximum 
energy i.e., violet light is most energetic.

6.5.  DUAL NATURE OF LIGHT
It has been found that some phenomena like diffraction, interference 

and polarisation of light can be explained only if light is considered 
to be of wave nature whereas some other phenomena like reflection 
of light, refraction of light, photoelectric effect cannot be explained by 
wave nature of light but can be explained only if light is considered to 
be made up of particles.

Hence we can say that light has a dual nature, particle nature as well 
as wave nature.

According to the particle nature, light consists of photons having 
frequency ν (nu) and energy, E = hν (where h is Planck’s constant).

According to the wave nature, light consists of waves having 
wavelength l (lamda) and velocity, c = νl.

Combining both relations, we get, energy,

	 E =	hν = 
hc
l

 i.e., E ∝ 
1
l

6.6.  RAY AND BEAM OF LIGHT

	 1.	 Ray of Light: A ray of light is a straight line along which 
light travels. In Fig. 6.1, OP represents a ray of light.

Fig. 6.1.  Ray of light.

	 2.	 Beam of light: A bundle of rays associated with a point source, 
form a beam of light.

		  It is shown in Fig. 6.2.
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		  If the rays of a beam come out of the point source (O), then 
beam is diverging [Fig. 6.2(a)].

		  If the rays of a beam meet at a point (O), then beam is 
converging [Fig. 6.2(b)].

(a) A diverging beam       (b) A converging beam      (c) A parallel beam

Fig. 6.2.  Beam of light.

		  A beam of light, in which all the rays are parallel to each other, 
is called parallel beam of light.

6.7.  OPTICAL MEDIUM
Substance, surrounding a source of light through which light travels, 

is called optical medium or simply medium. A medium can be : 
transparent, opaque or translucent.
	 (i)	 Transparent medium: Medium through which light can completely 

pass, is called a transparent medium.
		  Examples: Air, water, glass.
	(ii)	 Opaque medium: Medium through which no light can pass, is 

called an opaque medium.
		  Examples: Wood, wall, metals.
	(iii)	 Translucent medium: Medium through which light passes only 

partially, is called a translucent medium.
		  Examples: Tracing paper, oil-soaked paper.

6.8.  PROPAGATION OF LIGHT
Light travels in a straight line from a source as long as it remains in one 
medium and is not obstructed by any object. This mode of propagation 
of light is called rectilinear propagation. Activity 6.1 demonstrates that 
light travels in a straight line.
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  ACTIVITY 6.1
  To Demonstrate that Light Travels in a Straight Line

Materials Required
Three rectangular pieces of cardboard, a candle, and a lighter

Procedure
	 1.	 Take three rectangular pieces of cardboard.
	 2.	 Make holes in each of them in the centre such that all the 

holes are at exactly the same horizontal level.
	 3.	 Make the cardboard stand straight and parallel on a table 

using wooden supports.
	 4.	 Make sure that the holes in all the three cardboard pieces are 

aligned.
	 5.	 Light the candle and keep it on the table with its flame at the 

level of the hole in the first cardboard.
	 6.	 Now keep your eye in front of the third cardboard and adjust 

the cardboards such that you can see the candle flame through 
the holes [Fig. 6.3 (a)].

(a)

(b)

Fig. 6.3. Experiment to show that light travels in a straight line
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	 7.	 Move one of the cardboards slightly to misalign its hole to the 
others and observe.

	 8.	 What do you observe [Fig. 6.3 (b)]?	

Observation
You will observe that the flame can only be seen when the holes are 
exactly in a straight line. If you disturb one of the cardboards, you 
will no longer be able to see the flame. This activity clearly proves 
that light travels in a straight line.

6.9.  REFLECTION AND REFRACTION OF LIGHT

Reflection
You can see an object only when light falls on it. When light falls on 

a surface, it bounces off the surface and strike our eyes. It makes us 
see the things. The bouncing back of light rays from a surface is called 
reflection.

Refraction
Refraction is the bending of light as it crosses the interface between 

two different transparent media.

6.10.  TYPES OF REFLECTION
There are two types of reflection, known as Regular and Diffused 

reflection.

  ACTIVITY 6.2
Imagine that parallel rays are incident on an irregular surface as shown 
in Fig. 6.4. The laws of reflection are valid at each point of the surface. 
Use these laws to construct reflected rays at various points. Are they 
parallel to one another? You will find that these rays are reflected in 
different directions (Fig. 6.5).
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Fig. 6.4. Parallel rays incident on an irregular surface

Fig. 6.5. Rays reflected from irregular surface

When all the parallel rays reflected from a plane surface are not 
parallel, the reflection is known as diffused or irregular reflection. 
Remember that the diffused reflection is not due to the failure of the 
laws of reflection. It is caused by the irregularities in the reflecting 
surface, like that of a cardboard.

On the other hand reflection from a smooth surface like that of a 
mirror is called regular reflection (Fig. 6.6). Images are formed by 
regular reflection.

Fig. 6.6. Regular reflection

6.11.  FORMATION OF SHADOWS
We now know that light travels in a straight line. So, an opaque 

object blocks the light falling on it. This creates an area of darkness on 
the side of the object away from light. This area of darkness is called the 
shadow of the object.
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The following three things are 
required for a shadow to form  
(Fig. 6.7):
	 •	 a source of light;
	 •	 an opaque object; and
	 •	 a screen or surface behind 

the object.

A shadow cannot form if any of 
these is absent. This explains why 
we cannot see a shadow in the 
dark. It is only when light rays are obstructed by an opaque object that 
we get a shadow of the object. Activity 6.3 will make us understand the 
formation of shadow and its characteristics.

  ACTIVITY 6.3
To Obtain a Shadow and Study its Characteristics

Materials Required
A torch, a few small opaque objects of different shapes and sizes, 
and a white screen (a piece of cardboard covered with white paper).

Procedure
	 1.	 Turn on the torch and place any opaque object in front of it. 
	 2.	 Hold the screen on the other side of the object to get the 

shadow.
	 3.	 Ask your friend to trace out the outline of the shadow on the 

screen.
	 4.	 Now, keeping the positions of the torch and the screen intact, 

move the object closer to the torch. What do you see?
	 5.	 Note the size of the shadow.
	 6.	 Repeat steps 1 to 5 for different objects.
	 7.	 Does the colour of the shadow change with size or for various 

different objects?

Source of light

Opaque object

Shadow

Fig. 6.7. Formation of shadow
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Torch
Ball

Shadow

Fig. 6.8. Demonstration of formation of shadow

Observation
The shadow becomes bigger when the object is moved closer to the 
torch, and smaller when it is moved closer to the screen. The colour 
of the shadow is always black.

Characteristics of a Shadow

A shadow has the following three characteristics:
	 1.	 It is always black, regardless of the colour of the object used to 

make the shadow.
	 2.	 It only shows the shape or outline of the object and not the 

details.
	 3.	 The size of a shadow varies. It depends on the distance between 

the object and the source of light, and the distance between the 
object and the screen.

Identification of Umbra and Penumbra
If the light source is a point, then all objects will have one kind of 

shadow behind them. But if the light source is a sphere, then every 
object has behind it a core shadow known as umbra and a sort of side-
way shadow known as penumbra. Similarly, the distant light source 
forms penumbra and umbra irrespective of its shape.
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Umbra

ObstaclePoint
Source

    

Umbra

PenumbraExtended

Source
Obstacle

          Fig. 6.9. Formation of umbra	       Fig. 6.10. Formation of umbra and penumbra

6.12.  FORMATION OF ECLIPSES
Eclipse is the blocking of light from the sun by the interference of 

the moon or earth. There are two types of eclipse.
	 (a)	 Solar eclipse
	 (b)	 Lunar eclipse

Solar Eclipse
Solar eclipse is the eclipse of the sun. It occurs when the moon 

passes between the sun and the earth. The shadow of the moon may 
completely block the sun. This is called total solar eclipse. And when 
only a portion of the sun is out of view, it is called partial solar eclipse.

EarthC

Moon

A

B

Sun

Penumbra

Umbra

Fig. 6.11. Solar eclipse.

Lunar Eclipse
Lunar eclipse (eclipse of the moon) occurs when the earth passes 

between the sun and the moon. The shadow of the earth falls on the 
moon, blocking its view, partially or totally.
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Umbra: It is the darkest part of the shadow. Here all the light from the 
source is blocked.
Penumbra: It is the region where the shadow is partial.

Earth

Moon

A

B

Sun

Penumbra

Umbra

Fig. 6.12. Lunar eclipse

When the whole sheet of paper is spread on the table, it represents one 
plane. The incident ray, the normal at the point of incidence and the 
reflected ray are all in this plane. When you bend the paper you create a 
plane different from the plane in which the incident ray and the normal 
lie. Then you do not see the reflected ray. What does it indicate? It 
indicates that the incident ray, the normal at the point of incidence 
and the reflected ray all lie in the same plane. This is another law 
of reflection.
Thus, the law of reflection states that
	 (i)	 the angle of incidence is always equal to the angle of reflection.
	 (ii)	 the incident ray, the normal at the point of incidence and the 

reflected ray all lie in the same plane.

6.13.  PINHOLE CAMERA IMAGE FORMATION AND MAGNIFICATION
A pinhole camera consists of a light proof box with a pinhole on one 

end and a screen of tracing paper at the other end. It has no lens. The 
image is formed by light travelling in straight line from an object to the 
screen.

A common use of the pinhole camera is to capture the movement 
of the sun over a long period of time. It is popular for observing solar 
eclipses.
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Operation of the Pinhole Camera
Aim the camera at a bright 

object in a darkened room. You 
will see an upside down image 
on the tracing paper. The upside 
down image is formed because 
light rays travel in a straight 
line. The light rays from the top of the object travel through the pinhole 
and strike the bottom of the screen of pinhole camera. The light rays 
from the bottom of the object travel through pinhole and strike the top of 
the screen of the pinhole camera, thus forming the upside down image.

If a line is drawn through the pinhole and perpendicular to both the 
image and the object, it can be shown by similar triangles that:

	 Magnification m =	
height of image
height of object

 = 
distance of image
distance of object

	 m =	
hi
ho

 = 
di
do

Example 1.  What is the height of an image if an object 8.0 cm high is 
125 cm from a pinhole camera that is 21 cm long?

Solution.
	

hi
ho

 =	
di
do

	 hi =	
diho
do

	 hi =	
21 cm × 8.0 cm

125 cm

	 hi =	1.3 cm
What is the magnification?
	 m =	

di
do

	 m =	
21 cm

125 cm

	 m =	0.17

do diho

Object Pinhole camera

hi

Image

Fig. 6.13
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Example 2.  What is the actual size of an object if the magnification is 
0.20 and the image is 3.5 cm high?

Solution.
	 m =	

hi
ho

	 0.20 =	
3 5. cm
ho

	 ho =	
3 5

0 20
.

.
cm  = 17.5 cm

6.14.  REFLECTION OF LIGHT

When light is incident on the surface of an object then it may be 
reflected, absorbed or transmitted.

When whole of the light, incident on the surface of an object, is 
absorbed by the object then object appears black. Our hairs appear 
black because they absorb most of the light incident on them.

If the object allows the incident light to pass through it then object 
is said to be transparent e.g., sheet of ordinary glass. When light 
passes through a transparent medium, it bends from its path and this 
phenomenon is called refraction of light.

If light falls on an opaque polished smooth surface (medium), then it 
returns back in the same medium.

For example, a polished silver mirror reflects back most of the light 
incident on it.

This phenomenon of sending back of rays of light in the same medium 
when they are incident on a smooth polished surface is called reflection 
of light.

Some objects reflect more light and some objects reflect less light. 
Objects with polished shining surfaces reflect more light than the object 
having dull surfaces. Silver metal is the best reflector of light.
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6.15.  REFLECTION OF LIGHT FROM A PLANE POLISHED SURFACE
Since silver metal is the best reflector of light, hence ordinary mirrors 

are made by depositing a very thin layer of silver on one side of the 
plane glass sheet. Then thin silver layer is coated with red paint, so 
as to protect the silver coating. Reflection of light from a plane mirror 
takes place at the interface of glass and silver.

In our future discussion and while making diagram, a plane mirror 
is represented by a straight line with a number of oblique lines on its 
back side.

In Fig. 6.14, XY is section of a plane 
polished surface mirror. A ray of light PO 
strikes the surface at O and is returned 
back along OQ. An arrow on PO and OQ 
gives us the direction of propagation of 
ray of light.

The returning back of the light in same 
medium is called reflection.

Some important terms associated 
with the reflection from a plane polished surface are given below:
	 (i)	 Reflecting surface: The surface from which the light is reflected, 

is called the reflecting surface. In diagram, XY is the reflecting 
surface, (Actually XY is the section of a reflecting surface, made 
by the plane of the book page which is perpendicular to it). Silver 
metal is one of the best reflectors of light.

	(ii)	 Point of incidence: The point on the reflecting surface at which a 
ray of light strikes, is called the point of incidence. In Fig. 6.14, O 
is the point of incidence.

	(iii)	 Normal: Normal is a line, perpendicular to the reflecting surface, 
at the point of incidence. In Fig. 6.14, NO is the normal.

	(iv)	 Incident ray: The ray of light which strikes the reflecting surface 
at the point of incidence is called the incident ray. In Fig. 6.14, PO 
is the incident ray.

	(v)	 Reflected ray: The ray of light which is sent back by the reflecting 
surface from the point of incidence, is called the reflected ray. In 
Fig. 6.14, OQ is the reflected ray.

Fig. 6.14.  Reflection of light from a 
plane polished surface.
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	(vi)	 Angle of incidence: The angle which the incident ray makes with 
the normal at the point of incidence is called the angle of incidence.

		  It is represented by the symbol ∠i. In Fig. 6.14, angle PON is the 
angle of incidence.

	(vii)	 Angle of reflection: The angle which the reflected ray makes with 
the normal at the point of incidence is called the angle of reflection.

		  It is represented by the symbol ∠r. In Fig. 6.14, angle QON is the 
angle of reflection.

	(viii)	Plane of incidence: The plane in which the normal and the incident 
ray lie, is called the plane of incidence. In Fig. 6.14, the plane of 
the book-page, is the plane of incidence.

	(ix)	 Plane of reflection: The plane in which the normal and the 
reflected ray lie, is called the plane of reflection. In Fig. 6.14, the 
plane of the book-page, is the plane of reflection.

6.16.  MIRRORS
The polished surfaces used in the study of reflection of light, are 

called mirrors.
These are of two types: (i) Plane mirrors and (ii) Spherical mirrors.

	 (i)	 Plane mirrors: If the polished reflecting 
surface is plane, the mirror is called a 
plane mirror. Figure 6.15 shows, XY as the 
section of a plane mirror.

	(ii)	 Spherical mirrors: Spherical mirror is a 
part of a hollow sphere whose one side is 
polished.

		  Spherical mirrors are of two types:
	 (a)	 Concave mirror. It is polished on the convex side and reflection 

from this mirror takes place from the concave side.
		  It is shown in Fig. 6.16 (a).
	 (b)	 Convex mirror. It is polished on the concave side and reflection 

from this mirror takes place from the convex side.
		  It is shown in Fig. 6.16 (b).

YX

Fig. 6.15.  Plane mirror.
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(a) Concave mirror
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             (b) Concave mirror
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(b) Convex mirror

Fig. 6.16.  Spherical mirrors.

6.17.  LAWS OF REFLECTION OF LIGHT
When light is incident on a smooth surface (mirror) then it gets 

reflected in accordance with the two laws of reflection. These laws of 
reflection are given below.

First law: The incident ray, the reflected ray and the normal at the 
point of incidence, all lie in the same plane. In Fig. 6.14, incident ray PO, 
reflected ray OQ and the normal ON, all lie in the same plane i.e., plane 
of the paper.

Second law: The angle of incidence is always equal to the angle 
of reflection. If angle of incidence is ∠i and angle of reflection is ∠r 
then,

	 ∠i =	∠r
When a ray of light falls normally on a mirror i.e., at right angle, 

then angle of incidence, (∠i) = 0°. Since angle of incidence is 0°, hence 
in accordance with the second law of reflection, angle of reflection will 
also be zero i.e., ∠r = 0°.

In other words, we can say that when a ray of light falls normally on 
a mirror, then reflected ray will also travel perpendicular the mirror i.e., 
when a ray of light falls on a mirror normally, it gets reflected back along 
the same path.

Laws of reflection given above are equally applicable to all types of 
mirrors.

6.18.  REFLECTION FROM SPHERICAL MIRRORS
Some terms associated with spherical mirrors are given below:
	 (i)	 Aperture: The diameter of the circular rim of the mirror is called the 
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aperture of the mirror. Size of the mirror is usually referred to as 
aperture. In Fig. 6.17, AB is the aperture of the mirror.

	(ii)	 Pole: The centre of the spherical mirror is called pole of the mirror. 
It lies on the surface of the mirror. It is the lowest point in case of 
a concave mirror and highest point in case of a convex mirror. All 
distances are measured from the pole of the mirror: In Fig. 6.17, 
P is the pole of the mirror.

	(iii)	 Centre of curvature: Centre of curvature of a spherical mirror 
is the centre of the hollow sphere of which mirror is a part. It lies 
outside the surface of the mirror. Every point on the surface of the 
spherical mirror lies at the same distance from it. In Fig. 6.17, C is 
the centre of curvature of the mirror.

(a) Concave mirror   (b) Convex mirror

Fig. 6.17.  Spherical mirrors.

	(iv)	 Principal axis: The straight line passing through the pole of the 
mirror and the centre of curvature of the mirror, is called principal 
axis of the mirror.

	(v)	 Principal focus: It is a point on the principal axis of the mirror, 
such that the rays incident on the mirror, parallel to the principal 
axis, after reflection actually meet at this point (in case of a concave 
mirror) or appear to come from this point (in case of a convex mirror). 
In Fig. 6.17, F is the principal focus of the mirror.

	(vi)	 Radius of curvature: The distance between the pole and the centre 
of curvature of the mirror is called the radius of curvature of the 
mirror. It is equal to the radius of the hollow sphere of which, the 
mirror is a part. In Fig. 6.17, PC is the radius of curvature of the 
mirror. It is represented by the symbol R.
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	(vii)	 Focal length: The distance between the pole and principal focus of 
the mirror is called the focal length of the mirror. In Fig. 6.17, PF is 
the focal length of the mirror. It is represented by the symbol  f. For 
a concave mirror focal length is negative.

	(viii)	Principal section: A section of the spherical mirror cut by a plane 
passing through its centre of curvature and the pole of the mirror, is 
called the principal section of the mirror. It contains the principal 
axis. In diagram, APB is the principal section of the mirror cut by 
the plane of the book page.

6.19	  ELECTROMAGNETIC SPECTRUM (including elementary facts 	
	   about their uses)

Electromagnetic waves cover a wide range of frequencies or 
wavelengths. The classification of electromagnetic waves does not have 
sharp boundaries. This is because the classification of electromagnetic 
waves is done according to their main source and different sources may 
produce waves in overlapping ranges of frequencies.

Electromagnetic spectrum is the orderly distribution of electromagnetic 
radiations in accordance with their wavelength or frequency. The usual 
classification of the electromagnetic spectrum is summarised below :

1. Radio frequency waves. (a) These have wavelengths ranging from 
a few kilometre down to 0.3 m. The frequency range is from a few Hz to 
109 Hz.

(b) Radio waves reach us from extraterrestrial sources. The Sun is 
a major source of radio waves. These often interfere with radio and TV 
reception on Earth. Jupiter is also an active source of radio emissions.

(c) Mapping the radio transmissions from extraterrestrial sources, 
known as radio astronomy, has provided information about the 
universe  that  is often not obtainable using optical telescopes. Since 
the Earth’s atmosphere does not absorb strongly at radio wavelengths, 
radio astronomy provides certain advantages over optical, infrared or 
microwave astronomy on Earth.

(d) Properties of Radiowaves. (i) They are electromagnetic waves. 
(ii) They travel with a velocity of 3 × 108 m s–1 in vacuum. (iii) They can 
be reflected, refracted and diffracted.
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(e) Uses of Radiowaves. (i) The early uses were maritime, for 
sending telegraphic messages using Morse code between ships and land.  
(ii) They are used in AM broadcast radio and FM broadcast radio. 
(iii) They are used in Aviation voice radios and Marine voice radios. 
(iv) Civil and military voice services use short wave radio to contact ships 
at sea, aircraft and isolated settlements. (v) Radar detects things at a 
distance by bouncing radio waves off them. (vi) They are used in radio 
remote controls. (vii) They are used in radio and TV communication 
systems. (viii) They are used in radio-astronomy. (ix) Cellular phones 
use radio waves to transmit voice communication in the UHF band.

2. Microwaves. (short-wavelength radio waves) (a) The wavelengths 
of microwaves range from 0.3 m down to 10–3 m. The frequency range is 
from 109 Hz upto 3 × 1011 Hz.The microwave region is also designated 
as UHF (ultra-high frequency relative to radio frequency).

(b) Properties  of  Microwaves. (i) They  are  electromagnetic  waves. 
(ii) They travel with a velocity of 3 × 108 m s–1 in vacuum. (iii) They can 
be reflected, refracted and diffracted. (iv) When absorbed by matter, they 
produce heat. (v) Microwaves pass easily through the earth’s atmosphere 
with less interference than longer wavelengths. (vi) There is much more 
bandwidth in the microwave spectrum than in the rest of the radio 
spectrum. (vii) They can be used to transmit power over long distances.

(c) Uses of Microwaves. (i) They are used in the analysis of very fine 
details  of  atomic  and  molecular  structure.  (ii)  They  are  used  for  
cooking.  Microwave ovens are an interesting domestic application of 
these waves. In such ovens, the frequency of the microwaves is selected 
to match the resonant frequency (3 GHz) of water molecules so that 
energy from the waves is transferred efficiently to the kinetic energy of 
the molecules. This raises the temperature of any food containing water. 
(iii) They are used in communication satellite transmissions. (iv) Due 
to their short wavelengths, they are suitable for the radar systems used 
in aircraft navigation. In fact, radar uses microwave radiation to detect 
the range, speed and other characteristics of remote objects. (v) Cable 
TV, Internet and cellphone networks make use of lower microwave 
frequencies.

3. Infrared rays. (a) The infrared spectrum covers wavelengths from 
10–3 m down to 7.8 × 10–7 m (or 7800 Å). The frequency range is from 
3 × 1011 Hz up to 4 × 1014 Hz. 
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(b) Infrared rays are produced by hot bodies and molecules. Broadly 
speaking, following are the laboratory sources for the production 
of infrared rays. The underlying principle is excitation of atoms and 
molecules. This may involve vibration and bending of molecules.
	 (i)	Laser. It produces highly monochromatic infrared rays. CO2 Laser 
gives infrared rays of wavelength 10.6 µm. He-Ne Laser gives infrared 
rays of wavelengths 0.69 µm, 1.19 µm and 3.39 µm.
	 (ii)	Filament of Nernst Lamp. It is made from a mixture of zirconium, 
thorium and cesium. When current flows through such a filament, it gets 
heated. At a temperature of nearly 1200 K, infrared rays are emitted.

(c) Earth as an infrared emitter. The surface of earth absorbs visible 
radiation from the sun and re-emits a major portion of this energy as 
infrared back into the atmosphere.

(d) For detection of infrared rays, we use bolometers, thermopiles, 
photo conducting cells etc.

(e) Properties  of  infrared rays. (i)  They are electromagnetic waves. 
(ii) They travel with a velocity of 3 × 108m s–1 in vacuum. (iii) They 
show interference effects. (iv) They can be polarised. (v) They affect 
photographic plate. (vi) They show heating effect. (vii) Smoke is more 
transparent to infrared than to visible light. (viii) Under fog conditions, 
infrared can travel through long distances because of their low scattering.

(f) Uses of infrared rays. (i) They are used in night vision devices 
during warfare. This is because they can pass through haze, fog and mist. 
(ii) Infrared rays are used to take photographs in darkness. (iii) They 
are used to keep the green houses warm. (iv) They are used in revealing 
the secret writings on the ancient walls. (v) They are used in muscular 
therapy i.e., to treat muscular strains. IR bulbs are used in muscular 
therapy. (vi) The infrared rays from the sun keep the earth warm.  
(vii) They provide electrical energy to a satellite by using solar cells.  
(viii) They are used in solar water heaters and cookers. (ix) They are used 
for producing dehydrated fruits. (x) They are used in weather forecasting 
through infrared photography. 

4. Light or visible spectrum. This is a narrow band formed by 
the wavelengths to which our retina is sensitive. It extends from a 
wavelength of 7.8 × 10–7 m  down  to  3.8 × 10–7  m  and  frequencies  from   
4 × 1014 Hz up to 8 × 1014 Hz. Light is produced by atoms and molecules 
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as a result of internal adjustment in the motion of their components, 
principally that of the electrons. 

Colour λ (in metre) ν (in Hz)

Violet 3.90 × 10–7 – 4.55 × 10–7 7.69 × 1014 – 6.59 × 1014

Blue 4.55 × 10–7 – 4.92 × 10–7 6.59 × 1014 – 6.10 × 1014

Green 4.92 × 10–7 – 5.77 × 10–7 6.10 × 1014 – 5.20 × 1014

Yellow 5.77 × 10–7 – 5.97 × 10–7 5.20 × 1014 – 5.03 × 1014

Orange 5.97 × 10–7 – 6.22 × 10–7 5.03 × 1014 – 4.82 × 1014

Red 6.22 × 10–7 – 7.80 × 10–7 4.82 × 1014 – 3.84 × 1014

The sensitivity of the eye also depends on the wavelength of 
light. This sensitivity is maximum for wavelengths of approximately 
5.6 × 10–7 m. Because of the relation between colour and wavelength 
or frequency, an electromagnetic wave of well-defined wavelength or 
frequency is also called a monochromatic wave (monos-one ; chromos 
colour).

5. Ultraviolet Rays. (a) These rays were discovered by Ritter in 1801.
Ultraviolet rays are electromagnetic waves whose wavelength ranges 

from  6 × 10–10 m (0.6 nm) to 4 × 10–7 m (400 nm). The frequency ranges 
from 8 × 1014 Hz to 5 × 1017 Hz.

Their energy is of the order of magnitude of the energy involved in 
many chemical reactions. This accounts for many of their chemical 
effects.

(b) Ultraviolet rays are a part of the solar spectrum. These waves 
are produced by atoms and molecules in electrical discharges. They can 
be produced by passing discharge through hydrogen and xenon. They 
can also be produced by the arcs of mercury and iron.

The sun is a very powerful source of ultraviolet radiation. This fact is 
mainly responsible for suntans. Exposure to UV radiation induces the 
production of more melanin, causing tanning of the skin. UV radiation 
is absorbed by ordinary glass. Hence, one cannot get tan or sunburn 
through glass window.

Welders wear special glass goggles or face masks with glass windows 
to protect their eyes from large amount of UV produced by welding arcs.



PHYSICS XI200

(c) Properties of ultraviolet rays. (i) They are electromagnetic waves. 
(ii) They travel with a velocity of 3 × 108 m s–1 in vacuum. (iii) They 
obey the laws of reflection and refraction. (iv) They show interference 
and polarisation. (v) They affect photographic plate. (vi) They show 
photoelectric effect. (vii) They cannot pass through glass. However, they 
can pass through quartz, fluorite and rock salt. (viii) They can cause 
fluorescence in certain materials. (ix) When skin is exposed to sunlight, 
ultraviolet rays synthesise vitamin D. (x) These rays are very harmful 
to the living tissues. (xi) Brief exposure to ultraviolet radiation causes 
common sunburn, but long-term exposure can lead to more serious 
effects, including skin cancer.

(d) Uses of ultraviolet rays. (i) They are used to preserve food 
stuffs as the rays kill germs. (ii) They are used to make drinking water 
free from bacteria. UV lamps are used to kill germs in water-purifiers. 
(iii) Ultraviolet absorption spectra are used in the study of molecular 
structure and the arrangement of electrons in the external shells of 
atoms. (iv) Ultraviolet rays have medical applications. Since these 
rays destroy bacteria therefore they are used for sterilising surgical 
instruments. (v) They are used in detecting the invisible writings, forged 
documents, counterfeit currency notes and finger prints in forensic 
laboratory. (vi) Ultraviolet rays are used for checking the mineral samples  
by  making  use  of  the  fact that ultraviolet rays cause fluorescence.

6. X-rays. This part of the electromagnetic spectrum extends from 
wavelengths of nearly 10–9 m down to wavelengths of nearly 6 × 10–12 m or 
frequencies between 3 × 1017 Hz and 5 × 1019 Hz. X-rays were discovered 
in 1895 by the German physicist W. Roentgen when he was studying 
cathode rays. X-rays are produced by the inner or more tightly bound 
electrons in atoms. Another source of X-rays is the bremsstrahlung or 
decelerating radiation.

They are used in medical diagnosis because the relatively greater 
absorption of  X-rays by bone as compared with tissue allows for a fairly 
well-defined pattern on a photographic film. They also, as a result of the 
chemical processes they induce, cause serious damage to living tissues 
and organisms. It is for this reason that X-rays are used for treatment 
of cancer, to destroy diseased tissue. It should be emphasised that even 
a small amount of  X-rays also destroys some good tissue and exposure 
to a large dose of X-rays may cause enough destruction to produce 
sickness or death.
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Fig. 6.18. The electromagnetic spectrum, with common names for various part of it. 
The various regions do not have sharply defined boundaries. 

7. Gamma rays. These electromagnetic waves are of nuclear origin. 
They overlap the upper limit of the X-ray spectrum. Their wavelength 
ranges from nearly 10–10 m to well below 10–14 m, with a corresponding 
frequency range from 3 × 1018 Hz to more than 3 × 1022 Hz. The energies 
of these waves are of the same order of magnitude as those involved in 
nuclear processes and therefore the absorption of  γ-rays may produce 
some nuclear changes. Gamma rays are produced by many radioactive 
substances and are present in large quantities in nuclear reactors. 

Uses of Gamma Rays : Gamma rays are used:
(i) in radiotherapy for the treatment of malignant tumours.
(ii) to initiate some nuclear reactions.
(iii) to preserve food stuffs for a long time. This is because soft γ-rays 

can kill micro-organisms.
(iv) to study the structure of atomic nuclei.
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REVIEW EXERCISES

Do the review exercises in your notebook.

A. Multiple Choice Questions

	 1.	 The energy whose presence makes the surrounding objects visible is:
	 (a)	 heat	 (b)	 sound
	 (c)	 light	 (d)	 electrical.
	 2.	 Medium through which light is fully passed, is called
	 (a)	 transparent	 (b)	 opaque
	 (c)	 transluscent	 (d)	 alloy.
	 3.	 Medium through which light cannot pass, is called
	 (a)	 transparent	 (b)	 opaque
	 (c)	 transluscent 	 (d)	 alloy.
	 4.	 Medium through which light is partially passed, is called
	 (a)	 transparent 	 (b)	 opaque
	 (c)	 transluscent 	 (d)	 opaque transparent.
	 5.	 Angle of reflection is the angle between
	 (a)	 incident ray and normal to the surface
	 (b)	 incident ray and surface of the mirror
	 (c)	 reflected ray and surface of mirror
	 (d)	 reflected ray and normal to the surface.
	 6.	 In case of reflection from a spherical mirror, the image formed is
	 (a)	 always real
	 (b)	 always virtual
	 (c)	 real as well as virtual
	 (d)	 neither real nor virtual.
	 7.	 In sign convention to be followed, the mirror is kept with its reflecting 

face towards
	 (a)	 left	 (b)	 right
	 (c)	 upward	 (d)	 downward.
	 8.	 Image of the face has an enlarged size when seen in a mirror from a 

close distance. The mirror is
	 (a)	 plane	 (b)	 concave
	 (c)	 convex	 (d)	 parabolic
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	 9.	 Bending of a ray of light, when it enters obliquely from one medim to 
other is called

	 (a)	 reflection	 (b)	 refraction
	 (c)	 dispersion	 (d)	 interference

	 10.	 The relation, sin
sin

i
r

 = n, is called

	 (a)	 Snell’s law	 (b)	 Newton’s law
	 (c)	 Joule’s law	 (d)	 Boyle’s law

B. Fill in the Blanks
	 1.	 __________ nature of light is used in our everyday life.
	 2.	 Light passes partially through __________  medium. 
	 3.	 When two converging rays become incident on a convex mirror, the 

image formed is __________ .
	 4.	 Height of an inverted real image has a __________ sign.
	 5.	 For a convex mirror, magnification m is __________ one. 
	 6.	 In refraction, a ray of light __________ when it enters obliquely in 

some other medium.
	 7.	 Image distance for the image on the right of the lens is __________ .
	 8.	 A lens is put over a printed page, if diminished image of the print is 

seen, then lens is __________ .
	 9.	 A ray of light passing through the optical centre of a lens goes 

__________ .
	 10.	 If ang = 3/2, then gna = __________ .

C. Very Short Answer Questions
	 1.	 Which is a converging mirror: a convex or a concave?
	 2.	 Can a magnified image be formed by a convex mirror?
	 3.	 What determines the focal length of a spherical mirror?
	 4.	 In a concave mirror, is the reflecting surface away from the centre of 

the sphere of which the mirror forms a part?
	 5.	 In a concave mirror, when is the size of image exactly equal to the size 

of the object?
	 6.	 What is the angle of incidence when a ray falls normally on a mirror?
	 7.	 Do the laws of reflection hold good in case of spherical mirrors?
	 8.	 What is meant by refraction of light?
	 9.	 What do you mean by an optical medium?
	 10.	 What is the approximate wavelength of X-rays?
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D. Short Answer Questions

	 1.	 What is a mirror formula? Is it same for a convex and concave mirrors?
	 2.	 What is the focal length of a plane mirror?
	 3.	 A ray of light falls on a plane mirror making an angle of 60° with 

the mirror. Find the angle through which the ray gets deviated after 
reflection from the mirror.

	 4.	 An object is held at 30 cm in front of a convex mirror of focal length  
15 cm. At what distance from the convex mirror should a plane mirror 
be held so that images in the two mirrors coincide with each other?

	 5.	 What is mirror formula? Does it change with the nature of the image 
formed? Express the mirror formula in terms of radius of curvature 
of the mirror.

E. Long Answer Questions

	 1.	 An erect image three times the size of the object is obtained with a 
concave mirror of radius of curvature 0.36 m. Find the position of the 
object.

	 2.	 The image formed by a convex mirror of radius of curvature 40 cm is 
a quarter of the object. Calculate the distance of the object from the 
mirror.

	 3.	 When an object is placed at a distance of 60 cm from a convex mirror, 
the magnification produced is 1/2. Where should the object be kept 

to get a magnification of 1
3

.

	 4.	 A concave lens of focal length 25 cm and a convex lens of focal length 
20 cm are placed in contact with eachother. What is the power of this 
combination? Also, calculate focal length of the combination.

	 5.	 A concave lens has focal length of 15 cm. At what distance should an 
object from the lens be placed so that it forms an image at 10 cm from 
the lens? Also, find the magnification of the lens.
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